• News App
  • To:
  • Nanotechnology Holds Potential in Imaging Diagnosis, Treatment of Cancer

    March 01, 2013

    Diamonds and gold are among materials fueling new breakthroughs in medical nanotechnology for the imaging diagnosis and treatment of cancer patients.

    Diamonds, gold and other materials are helping to fuel new breakthroughs in medical nanotechnology for the imaging diagnosis and treatment of cancer patients, according to research presented at RSNA 2012.

    Daily Bulletin coverage of RSNA 2012 is available at RSNA.org/bulletin.

    Nanotechnology is based on the use of particles that have one or more dimensions measuring 100 nanometers or less. These nanoparticles have a greater surface area per weight than larger particles and are more reactive to some imaging agents and chemotherapy, making them a valuable asset in the burgeoning field of theranostics, the integration of therapeutic and diagnostic medicine.

    For example, gold nanoparticles have the potential to detect individual cancer cells circulating in the blood and destroy them with a laser, said Vladimir Zharov, Ph.D., D.Sc., of the Winthrop P. Rockefeller Cancer Institute at the University of Arkansas for Medical Sciences in Little Rock. Instead of drawing blood to look for cancer cells, clinicians could attach gold nanoparticles to biological molecules specific to cancer cells and inject them into the patient. Once attached to cancer cells, the gold nanoparticles could be seen with a laser beam and ultrasound transducer.

    “If one single tumor cell passes the laser beam, it would produce an acoustic wave visible with conventional ultrasound technology,” Dr. Zharov said. “The same laser could be used to create transient nanobubbles due to water evaporation around nanoparticles to physically kill the cancer cells.”

    Additional attachment of conventional drugs to gold nanospheres—now in Phase II clinical trials in humans—provides enhancement of antitumor action of this new so-called phototothermal nanodrug whose mechanism is based on synergy of laser-activated thermal, microbubble and biochemical-associated phenomena, Dr. Zharov said.

    Nanodiamonds Ideal for Bonding with Imaging Agents

    Dr. Zharov is particularly excited about the potential of gold nanoparticles to predict the establishment of metastases—the source of 90 percent of cancer deaths.

    “Conceivably, the test can be used to determine the aggressiveness of cancer based on the numbers of tumor cells circulating in the blood,” he said. “By counting the number of cancer cells, we can also predict treatment and see if drugs work or not in real time.”

    Researchers are experimenting with various nanoparticles for different imaging applications. At the University of California, Los Angeles, Dean Ho, Ph.D., and colleagues have been studying nanodiamonds—inexpensive, carbon-based particles made from the byproducts of mining and refining. Their multifaceted shape makes them ideal for binding with imaging agents and drugs.

    “You can load imaging agents like gadolinium onto nanodiamonds,” Dr. Ho said. “Because of the surface facets, nanodiamonds attract water and you get a striking increase in imaging contrast efficiency.”

    Nanodiamonds could also improve the effectiveness of chemotherapy drugs like doxorubicin.

    “Many tumors are resistant to drugs because the cancer cells pump the drug out,” Dr. Ho said. “Nanodiamonds bind the drug so tightly, it gets stuck in tumor cells longer.”

    Recent research highlights the potential of nanodiamonds to significantly reduce toxicity associated with chemotherapy. In a recent study on mice published in Science Translational Medicine, Dr. Ho’s group found that when they bound nanodiamonds to doxorubicin, the mice not only survived what had been a lethal dose, their tumors shrunk as well.

    “Nanodiamonds further increase the efficacy of the drug,” he said. “This could make it possible to get the same effects from a lower dose.”

    The research team is studying the technology in larger animal models with a push toward additional pre-clinical studies.

    Protein Catalyzed Capture Agents a Potentially Powerful Tool

    James R. Heath, Ph.D., from the California Institute of Technology in Pasadena, Calif., and a pioneer in nanotechnology, discussed protein catalyzed capture (PCCs) agents, a class of diagnostic and therapeutic agents that can mimic antibodies by reacting to surface areas of antigens known as epitopes.

    “PCCs are a potentially powerful tool that are easy to manufacture and can be optimized for reaction with specific epitopes,” he said.

    Session moderator Damian E. Dupuy, M.D., from Rhode Island Hospital and Brown University in Providence, R.I., said that nanotechnology lends itself to collaborative efforts among physicians, engineers and experts from other disciplines—a phenomenon commonly known as translational medicine.

    “Lots of big cancer research hospitals are looking for new ways to diagnose and treat cancer and we’ll see more and more of these agents in the future,” he said. “As radiologists, we are at the forefront of this research.”

    At the end of the session, Dr. Dupuy asked the researchers if he would see these nanoparticles in clinical use in his lifetime. All three answered “yes.”

    Silver Impregnated Central Venous Catheter Lines Reduce Infection Risk in Cancer Patients

    Stavros M. Stivaros, B.Sc.(Hons), M.B.Ch.B., F.R.C.R., Ph.D.

    Silver line impregnation reduces the incidence of catheter related bloodstream infections (CRBSI) in both single and double lumen long term central venous catheters (CVC), according to presenters at RSNA 2012.

    Daily Bulletin coverage of RSNA 2012 is available at RSNA.org/bulletin.

    Stavros M. Stivaros, B.Sc.(Hons), M.B.Ch.B., F.R.C.R., Ph.D., a consultant neuroradiolgist and clinical scientist at National Institute for Health Research (NIHR) and a lecturer at the University of Manchester, U.K., summarized the study’s clinical applications, saying that, “central venous catheter related infections have significant impact on patient morbidity and, at worst, mortality, in cancer patients. In our patient cohort, silver impregnated lines reduced infection risk.”

    Dr. Stivaros, also a research team member with The Christie, one of Europe’s largest cancer hospitals (also in Manchester), said the study was intended to assess whether the use of silver impregnation into the polymer of the CVC reduces CRBSI in the cohort of cancer patients undergoing chemotherapy. Dr. Stivaros, also head of the Biomedical Decision Systems Group at the University of Manchester, collaborated on the research with Hans-Ulrich Laasch, doctor of medicine, M.R.C.P., F.R.C.R., chief of intervention at The Christie and supervisor of the procedure team nurses.

    Referred over 15 months for CVC insertion in the specialist cancer center, 1,002 patients were randomized to receive either a standard or silver impregnated catheter. Except for silver contained in the catheter polymer, both catheters were identical. Patient follow-up continued until line removal and all removed lines were sent for microbiological culture.

    Of the 1,002 patients randomized, 981 patient follow-ups were evaluated. During the study, specialist nurses from the vascular access team placed 488 standard lines (393 single lumen and 95 double lumen) and 493 silver lines (390 single lumen and 103 double lumen). Of these, 175 catheters were removed for reasons of CRBSI, including 15.8 percent single lumen and 41.1 percent double lumen standard lines. In the silver impregnated group, the frequency of CRBSI fell to 9.7 percent single lumen and 35 percent double lumen.

    A stratified log rank test was statistically significant between the silver and non-impregnated lines (p=0.001) with a type-specific hazard ratio of 0.6 (95 percent CI, 0.44, 0.81), Dr. Stivaros found. Given the competing risks for line removal, such as primary diagnosis and chemotherapy type, he examined the probability of having the line removed for CRBSI in an environment in which other reasons for line termination are operating using Gray’s test, which showed that the cumulative incidence of CRBSI line removal stratified by lumen type was also statistically significant, he said.

    “Our study has significant impact in terms of patient morbidity and treatment completion,” Dr. Stivaros added. “As the additional cost for silver is approximately $50, extrapolating from this study, 1,000 patients all receiving silver impregnated lines would have had an additional $50,000 cost, but this would have saved $200,000 in additional CRBSI related costs, for a savings of $150,000.”

    Nanotechnology Holds Potential in Imaging Diagnosis, Treatment of Cancer (large)
    Gold carbon nanotubes—which are in Phase II clinical trials in humans—resemble artificial DNA, according to researchers.
    Damian E. Dupuy, M.D., and Vladimir Zharov, Ph.D., D.Sc.
    Dupuy       Zharov
    Dean Ho, Ph.D., and James R. Heath, Ph.D.
    Ho         Heath
  • comments powered by Disqus

We appreciate your comments and suggestions in our effort to improve your RSNA web experience.

Name (required)


Email Address (required)


Comments (required)





Discounted Dues: Eligible North American Countries 
Costa Rica
Dominican Republic
El Salvador
Netherlands Antilles
St. Vincent & Grenadines
Country    Country    Country 
Afghanistan   Grenada   Pakistan
Albania   Guatemala   Papua New Guinea
Algeria   Guinea   Paraguay
Angola   Guinea-Bissau   Peru
Armenia   Guyana   Phillippines
Azerbaijan   Haiti   Rwanda
Bangladesh   Honduras   Samoa
Belarus   India   Sao Tome & Principe
Belize   Indonesia   Senegal
Benin   Iran   Serbia
Bhutan   Iraq   Sierra Leone
Bolivia   Jordan   Solomon Islands
Bosnia & Herzegovina   Jamaica   Somalia
Botswana   Kenya   South Africa
Bulgaria   Kiribati   South Sudan
Burkina Faso   Korea, Dem Rep (North)   Sri Lanka
Burundi   Kosovo   St Lucia
Cambodia   Kyrgyzstan   St Vincent & Grenadines
Cameroon   Laos\Lao PDR   Sudan
Cape Verde   Lesotho   Swaziland
Central African Republic   Liberia   Syria
Chad   Macedonia   Tajikistan
China   Madagascar   Tanzania
Colombia   Malawi   Thailand
Comoros   Maldives   Timor-Leste
Congo, Dem. Rep.   Mali   Togo
Congo, Republic of   Marshall Islands   Tonga
Cote d'Ivoire   Mauritania   Tunisia
Djibouti   Micronesia, Fed. Sts.   Turkmenistan
Dominica   Moldova   Tuvalu
Domicican Republic   Mongolia   Uganda
Ecuador   Montenegro   Ukraine
Egypt   Morocco   Uzbekistan
El Salvador   Mozambique   Vanuatu
Eritrea   Myanmar   Vietnam
Ethiopia   Namibia   West Bank & Gaza
Fiji   Nepal   Yemen
Gambia, The   Nicaragua   Zambia
Georgia   Niger   Zimbabwe
Ghana   Nigeria    

Legacy Collection 2
Radiology Logo
RadioGraphics Logo 
Tier 1

  • Bed count: 1-400
  • Associate College: Community, Technical, Further Education (UK), Tribal College
  • Community Public Library (small scale): general reference public library, museum, non-profit administration office

Tier 2

  • Bed count: 401-750
  • Baccalaureate College or University: Bachelor's is the highest degree offered
  • Master's College or University: Master's is the highest degree offered
  • Special Focus Institution: theological seminaries, Bible colleges, engineering, technological, business, management, art, music, design, law

Tier 3

  • Bedcount: 751-1,000
  • Research University: high or very high research activity without affiliated medical school
  • Health Profession School: non-medical, but health focused

Tier 4

  • Bed count: 1,001 +
  • Medical School: research universities with medical school, including medical centers

Tier 5

  • Consortia: academic, medical libraries, affiliated hospitals, regional libraries and other networks
  • Corporate
  • Government Agency and Ministry
  • Hospital System
  • Private Practice
  • Research Institute: government and non-government health research
  • State or National Public Library
  • Professional Society: trade unions, industry trade association, lobbying organization