• News App
  • To:
  • MR Imaging Unit in Afghanistan Gives Soldiers Front-line Treatment

    February 01, 2013

    Mobile MR imaging is playing a unique role in diagnosing and treating mild traumatic brain injuries and other afflictions suffered by U.S. soldiers in Afghanistan.

    Since 2011, mobile MR imaging has played a surprising and unique role in diagnosing and treating mild traumatic brain injuries (mTBI) and other afflictions suffered by U.S. soldiers in war-torn Afghanistan, according to the presenter of an RSNA 2012 session.

    Daily Bulletin coverage of RSNA 2012 is available at RSNA.org/bulletin.

    MR imaging is greatly improving care to wounded warriors, many who suffer head injuries from roadside bombs, said Lt. Col. Sean Jersey, M.D., a third-year radiology resident at David Grant Medical Center, Travis Air Force Base, California, who discussed the current and future role of mobile MR imaging in combat and the clinical benefit and types of diseases identified with the modality.

    Although he was not able to attend RSNA 2012, Lt. Col. Robert Jesinger, M.D., Task Force Medical East Expeditionary Medical Support Squadron radiology flight commander, deployed to Afghanistan in 2012 and led the project to expand MR imaging in a combat war zone. Maj. Samuel Southam, M.D., also contributed to the project.

    In addition to brain injuries, trauma, tumors, infectious/inflammatory diseases and congenital disorders are among the afflictions diagnosed and treated by mobile MR imaging on host nationals, military contractors and Special and U.S./NATO Forces and others who otherwise would not have immediate access to MR technology, Dr. Jersey said.

    “While U.S./NATO troops could be removed from the combat zone for MR imaging, more rapid diagnosis of conditions with mobile MR imaging has been value-added in their care,” Dr. Jersey said. “And local nationals—who cannot leave the country—can be considered for MR imaging when under U.S./NATO care and when medically warranted.”

    While TBI is a signature injury of war, the ability to peer into the brain and see the injury, diagnose it, and actually examine the injury is relatively new, said Dr. Jersey, who reviewed cases remotely via teleradiology links between Afghanistan and the U.S. “Mobile MR imaging allows us to gather data on mild traumatic brain injury in the combat zone, diagnose mission-changing injuries such as neurological decompression sickness and musculoskeletal injuries in Special Forces troops, diagnose conditions only identifiable with MR imaging and even image military working dogs,” he said.

    “Medical people are deployed to the front line with the troops,” Dr. Jersey added. “These guys are getting a lot of stabilization treatments right on the front line. They’re getting a lot better treatment.”

    MR imaging has future potential in helping detect possible early signs of TBI, Dr. Jesinger said.

    “If you do a CT for TBI, you are usually looking for big problems, such as a head bleed,” Dr. Jesinger said. “MRI is geared to find subtle problems. If someone has had a concussion and we do an MRI and identify brain injury, then that’s a big deal. If we don’t see anything with an MRI, then it may be that there is nothing there, but we hope to find MRI as a helpful distinguishing tool. Treatment guidelines for head injury can be upgraded and more aggressive treatment can be done for someone with a head injury and visible results on an MRI, than if there are no indicators. Knowing that information sooner helps treatment to get initiated sooner.”

    Current results and future potential of MR imaging are worth the considerable effort put into buying and transporting the equipment, Drs. Jesinger and Jersey said. The U.S. Congress collaborated with the chairman of the Joint Chiefs of Staff to fund placement of the three mobile 1.5 Tesla MR imaging machines, including the one operated by the U.S. Air Force at Bagram Air Base in Afghanistan.

    Physically getting the mobile imaging machine to the Bagram Air Base in Afghanistan was a major undertaking that took weeks, Dr. Jersey said. It was also years in the making, creating a controversy as to whether or not it was worth the millions it cost, he said.

    Role of MR Imaging Expands to Myriad Conditions

    While the main purpose of MR imaging in a combat zone was for research and gathering data on U.S./NATO troops with brain injuries, the modality’s role has been carefully expanded to include medical conditions where results will change mission requirements and/or medical management, Dr. Jersey said.

    Examples include the use of MR imaging on a 19-year-old Army specialist who had experienced three weeks of left hip pain, limiting her duties. Her physical exam and radiographs were not diagnostic and after the soldier’s orthopedic surgeon requested an MR, she was diagnosed with an iliac wing sarcoma, Dr. Jersey said.

    In another case, MR imaging revealed an unstable T3 burst fracture in a 22-year-old Marine who fell and injured his upper thoracic spine. Toe cellulitis and osteomyelitis were discovered in a Special Forces troop member through MR and an acute biceps tendon tear was detected in a 23-year old Special Forces soldier who injured his elbow during combat.

    With MR imaging, an F-16 pilot with an acute right knee chondral injury was deemed unable to safely or effectively fly a combat aircraft, while a U-2 pilot was diagnosed with neurological decompression sickness. A military bomb-sniffing dog that developed leg weakness was diagnosed with a spine tumor. “We take care of our dogs just as we do people,” Dr. Jersey said.

    The equipment also aided in treating local nationals. MR imaging detected a radioactive adenopathy from cellulitis infection in an Afghan Army troop member, cortical dysplasia in an Afghan child with seizures and congenital brains cysts, Dr. Jersey said.

    In the future, MR imaging in combat zones could provide perfusion imaging applications such as neuroradiology and abdominal imaging as well as cardiovascular MR imaging and a more robust use of military teleradiology networks for MR imaging interpretation including second opinion consults, Dr. Jersey said.

    Lt. Col. Sean Jersey, M.D.
    Lt. Col. Robert Jesinger, M.D.
    Afghanistan MRI center ribbon cutting
    From left: Col. James Sperl, Col. Jane Prather and Lt. Col. Charles Voigt cut the ribbon for the grand opening of the new MR imaging machine at Craig Joint Theater Hospital at Bagram Air Base, Afghanistan, in October 2011. Image courtesy of U.S. Air Force/Senior Airman Krista Rose
    Afghanistan MR delivery
    Physically getting the mobile imaging machine to the Bagram Air Base in Afghanistan was a major undertaking that took weeks, according to Lt. Col. Sean Jersey, M.D., who said the results were worth the considerable effort. “These guys are getting a lot of stabilization treatments right on the front line,” Dr. Jersey said. Image courtesy of U.S. Air Force
  • comments powered by Disqus

We appreciate your comments and suggestions in our effort to improve your RSNA web experience.

Name (required)


Email Address (required)


Comments (required)





Discounted Dues: Eligible North American Countries 
Costa Rica
Dominican Republic
El Salvador
Netherlands Antilles
St. Vincent & Grenadines
Country    Country    Country 
Afghanistan   Grenada   Pakistan
Albania   Guatemala   Papua New Guinea
Algeria   Guinea   Paraguay
Angola   Guinea-Bissau   Peru
Armenia   Guyana   Phillippines
Azerbaijan   Haiti   Rwanda
Bangladesh   Honduras   Samoa
Belarus   India   Sao Tome & Principe
Belize   Indonesia   Senegal
Benin   Iran   Serbia
Bhutan   Iraq   Sierra Leone
Bolivia   Jordan   Solomon Islands
Bosnia & Herzegovina   Jamaica   Somalia
Botswana   Kenya   South Africa
Bulgaria   Kiribati   South Sudan
Burkina Faso   Korea, Dem Rep (North)   Sri Lanka
Burundi   Kosovo   St Lucia
Cambodia   Kyrgyzstan   St Vincent & Grenadines
Cameroon   Laos\Lao PDR   Sudan
Cape Verde   Lesotho   Swaziland
Central African Republic   Liberia   Syria
Chad   Macedonia   Tajikistan
China   Madagascar   Tanzania
Colombia   Malawi   Thailand
Comoros   Maldives   Timor-Leste
Congo, Dem. Rep.   Mali   Togo
Congo, Republic of   Marshall Islands   Tonga
Cote d'Ivoire   Mauritania   Tunisia
Djibouti   Micronesia, Fed. Sts.   Turkmenistan
Dominica   Moldova   Tuvalu
Domicican Republic   Mongolia   Uganda
Ecuador   Montenegro   Ukraine
Egypt   Morocco   Uzbekistan
El Salvador   Mozambique   Vanuatu
Eritrea   Myanmar   Vietnam
Ethiopia   Namibia   West Bank & Gaza
Fiji   Nepal   Yemen
Gambia, The   Nicaragua   Zambia
Georgia   Niger   Zimbabwe
Ghana   Nigeria    

Legacy Collection 2
Radiology Logo
RadioGraphics Logo 
Tier 1

  • Bed count: 1-400
  • Associate College: Community, Technical, Further Education (UK), Tribal College
  • Community Public Library (small scale): general reference public library, museum, non-profit administration office

Tier 2

  • Bed count: 401-750
  • Baccalaureate College or University: Bachelor's is the highest degree offered
  • Master's College or University: Master's is the highest degree offered
  • Special Focus Institution: theological seminaries, Bible colleges, engineering, technological, business, management, art, music, design, law

Tier 3

  • Bedcount: 751-1,000
  • Research University: high or very high research activity without affiliated medical school
  • Health Profession School: non-medical, but health focused

Tier 4

  • Bed count: 1,001 +
  • Medical School: research universities with medical school, including medical centers

Tier 5

  • Consortia: academic, medical libraries, affiliated hospitals, regional libraries and other networks
  • Corporate
  • Government Agency and Ministry
  • Hospital System
  • Private Practice
  • Research Institute: government and non-government health research
  • State or National Public Library
  • Professional Society: trade unions, industry trade association, lobbying organization