Multicenter implementation of a CT scanner dose excellence program based on clinical indication, BMI and diagnostic image quality assessment

H.Brat(1), S.Imsand(1), C.Dias(2), C.Thouly(1), S.Montandon(3), B.Rizk(1), D.Fournier(1), F.Zanca(2)

(1) Groupe 3R, Switzerland, (2) GE Healthcare, (3) Philips Healthcare
No disclosure

Background

• The revised European Basic Safety Standards Directive (2018) requires:
 • the radiation dose of every CT exam to be recorded with investigation of cases where radiation dose exceeded established reference levels.
 • Radiation protection education and dose optimization training.

• Initial multicenter CT scanner data analysis in Groupe 3R identified:
 • large dose variations,
 • protocol parameters inhomogeneity,
 • lack of staff training uniformity.
Purpose

• Groupe 3R Board priorities (2016)
 • To define and set-up a radiation dose optimization and education program at the group level (7 centers and 7 CT scanners from 3 manufacturers).
 • To implement a “dose culture” by guiding 22 radiologists and 40 technologists towards a change of practice.

Dose Excellence Program: Workflow Diagram

- Stakeholders: Industry, Dose Management Software (DoseWatch™), Medical Physics Expert (MPE)
- Steering Committee
- Team Leader
- Local Dose Teams
- 100% dose excess justification
- Alara
- Optimization
- Indication- and BMI-based protocol map
- CT Field engineer
- 3 NEGATIVE VOTES (2 READERS) OR MPE STOP
- DOSE LEVEL -1 (-12%)
- DOSE LEVEL -2 (-12%)
- DOSE LEVEL -3 (-12%)
- DOSE LEVEL +1 (+12%)
Step 1: Harmonization phase

Radlex
- Protocol Radlex mapping
- Design of a clinical indication-based protocol map
- 2 categories of patients for each protocol, according to BMI
- 30 protocols per BMI category

BMI < 25

BMI > 25

Step 1: Harmonization phase

Acquisition parameters:
- Indication and BMI based
 - Detector configuration
 - Pitch
 - Tube rotation time
 - Tube voltage
 - Tube current modulation
 - Noise index
 - Reconstruction kernel
 - Reconstruction parameters
 - Reconstruction standardization

Purpose
- To deliver a CTDI\textsubscript{vol} value
 - Close to P25 DRL when BMI<25
 - Below P75 DRL when BMI>25
Diagnostic image quality assessment

Radiologists prospectively vote for diagnostic image quality using an electronic voting tool in the dose management software.

A negative vote needs to be confirmed by a second reader using adapted European image quality guidelines.

Step 2: Optimization phase

- Dose reduction phase
 - 12% step-wise mA reduction for all protocols every 50 examinations of the same indication.
 - In case of 3 negative voting for diagnostic image quality per protocol, confirmed by a second reader, dose was increased by 12% to reach previous accepted dose level (ALARA).
 - In parallel, the Medical Physics Expert quantified with a model observer the low contrast detectability using a anthropomorphic phantom (QRM™ 401 abdomen phantom, Germany) to assess at which mA reduction level a 5mm lesion in the liver would not be diagnostically detectable.
Results

- A think tank on image quality related to clinical indication and patient habitus enabled a team commitment in a quality project and a consensual good practice standardization.

- The use of a dose management software combined to Radlex protocol mapping enabled 100% of dose excess justification and protocol comparison in a multicenter setting.

- Protocol harmonization allowed comparison of comparable data (no redundancy), maintained diagnostic image quality and reduced dose by 6% for chest and 7% for abdomen.

- Protocol optimization enabled an additional average dose reduction of 26% (range 20-30%, depending on clinical indication), before hitting the low contrast resolution limit as assessed by phantom measurements.

- Clinical indication- and BMI-based protocols allowed significantly lower dose levels than existing DRL based on anatomical region with a sufficient diagnostic image quality: "The right dose for the right diagnosis".

The complex process of homogenizing CT protocols and optimizing radiation doses without compromising image quality can be achieved with

- A clear roadmap
- Teamwork and education
- Continuous dose monitoring
- Partnership with stakeholders
- Leadership
- Regular communication
- Commitment

hugues.brat@groupe3R.ch