Reducing Functional MRI Scan Times by Optimizing Workflow

Wilson B. Chwang, Michael Iv, Darryl Costales, Jason Smith, Teresa Nelson, Aleksandrs Kalnins, Jake Mickelsen, Roland Bammer, Dominik Fleischmann, David B. Larson, Max Wintermark, and Michael Zeineh

Disclosures

- Michael Zeineh receives research funding from GE Healthcare
Background

- Functional MRI (fMRI) is a specialized, noninvasive exam of brain function
- fMRI is typically performed for pre-operative neurosurgical planning
- Performing fMRI is a complex undertaking requiring the coordinated efforts of an entire health care team
Background

- In our practice, we noticed inefficiencies in our fMRI workflow, leading to lengthy scan times
- Our purpose was to reduce fMRI scan times by increasing the efficiency of our workflow
- Our specific goal was to consistently reduce scan times to a mean of 60 minutes or less

METHODS
Methods: Institutional review board

- Our institutional review board (IRB) determined that our project does NOT meet the federal definition of “research” or “clinical investigation”
- Our project does not require formal review by our IRB

Methods: Multidisciplinary team

- We assembled a multidisciplinary team of Radiology faculty, fellows, technologists, administrators, and quality improvement managers
- The team had regular biweekly to monthly meetings from October 2014 to August 2015
- Multiple cycles of plan-do-study-act (PDSA) were conducted
Methods: Control chart and statistical methods

- We retrospectively reviewed all fMRI exams at our institution from January 2013 to August 2015
- We calculated the scan time of each exam, and plotted them on a statistical process control chart
- Process data were evaluated in real time using statistical process control methods to evaluate for a significant change in the process mean

Methods: Quality improvement process

- We performed root-cause analysis, using a cause-and-effect (fishbone) diagram to visualize factors contributing to lengthy fMRI scans
Methods: Quality improvement process

- We identified five key drivers, or intermediate goals to help guide specific interventions

<table>
<thead>
<tr>
<th>Key drivers</th>
<th>Specific interventions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Streamlined protocols</td>
<td>Eliminate intravenous contrast</td>
</tr>
<tr>
<td>Consistent patient monitoring</td>
<td>Reduce repeated language paradigms</td>
</tr>
<tr>
<td>Clear visual slides and audio</td>
<td>Update technologist checklists for patient monitoring</td>
</tr>
<tr>
<td>Improved patient understanding</td>
<td></td>
</tr>
<tr>
<td>Minimized patient motion</td>
<td>Update visual slides and audio</td>
</tr>
</tbody>
</table>

As a balancing measure, we reviewed each fMRI exam to determine whether it was of diagnostic quality.
Methods: Interventions

• 1) Eliminated intravenous contrast
• 2) Reduced repeated language paradigms

Typical old protocol
- 3-plane localizer
- T1 BRAVO
- R hand motor
- L hand motor
- VRN x 2
- ARN x 2
- OBJ x 2
- DTI
- T1 BRAVO post-gad

Typical new protocol
- 3-plane localizer
- T1 BRAVO
- R hand motor
- L hand motor
- VRN x 2
- ARN x 2
- OBJ x 2
- DTI
- T1 BRAVO post-gad

(Protocols are individualized for the patient as needed)

VRN = visual responsive naming; ARN = auditory responsive naming; OBJ = object naming

Methods: Interventions

• 3) Updated checklists for patient monitoring

Step-by-step checklists were provided along with examples of activation maps for each of the patient tasks
Methods: Interventions

4) Updated visual slides and audio

- Visual slides were updated to be easily readable, in large font size
- Audio files were re-recorded and edited so they could be heard easily

RESULTS
Results: Pre-intervention

Annotated control chart (individual chart, or I-chart). Each individual point represents an fMRI examination performed, with date on the x-axis and scan length in minutes on the y-axis.

Results: Pre- and post-intervention

- Pre-intervention and post-intervention mean scan times (horizontal blue lines)
- Goal (horizontal green line)
- Four interventions (vertical red arrows): 1) eliminated intravenous contrast, 2) reduced repeated language paradigms, 3) updated technologist checklists, and 4) updated visual slides and audio
- UCL, upper control limit; LCL, lower control limit
Results: Pre- and post-intervention

The outcomes data met criteria to indicate a shift in the process mean on November 28, 2014.

Pre-intervention
72 fMRI exams
Mean: 76.3 min
Stdev: 21.5 min

Post-intervention
33 fMRI exams
Mean: 53.2 min
Stdev: 8.4 min

(30% reduction) (61% reduction)
Results: Pre- and post-intervention

Pre-intervention
72 fMRI exams
57 diagnostic quality
15 nondiagnostic exams

Post-intervention
33 fMRI exams
28 diagnostic quality
5 nondiagnostic exams

Discussion
Discussion

• Our project focused on reducing fMRI scan times while maintaining diagnostic quality
• Direct benefits:
 ◦ Workflow efficiency is increased
 ◦ Less time spent conducting and monitoring exam
 ◦ Patient comfort
 ◦ Improved consistency
 ◦ Improved image quality from decreased motion
• Indirect benefits:
 ◦ Cost savings
 ◦ Increased revenue from additional fMRI that could be performed in the time saved (opportunity cost)

Discussion

• Limitations
 ◦ Difficult to prove direct causality between interventions and outcomes
 ◦ Improvement processes staggered over time; difficult to ascribe improved efficiency to a single intervention
 ◦ Calculation of scan time does not include patient setup and positioning
Discussion

- Future directions
 - Development of patient training video
 - Development of multilingual capabilities
 - Improved efficiency of monitoring, processing, and interpretation

CONCLUSION
Conclusion

- Optimizing fMRI workflow is an important part of our health care mission in Diagnostic Radiology
- By implementing specific interventions, we successfully reduced mean fMRI scan times from 76.3 minutes to 53.2 minutes (30% reduction)
- These interventions can be sustainable over time, and can be applied broadly to any fMRI practice

Thank you!