Frequency of Recurrent CT Examinations among Patients with High Cumulative Dose and/or Number of CT Examinations

M. Bostani, K. Beckett, B Salehi, A. Sepahdari, T. Oshiro, C. Cagnon, M. McNitt-Gray
Purpose

• With the help of dose management software:
 • What are some cumulative effective doses patients with multiple CT studies are exposed to?
 • Does high number of CT examinations result in highest cumulative dose?
 • Patients’ demographics – What procedures result in high cumulative doses?
 • Opportunities to reduce dose?
 • Flag potentially redundant CT scans?

Introduction

• Motivations behind the study:
 • Based on AAPM position statement on radiation from medical imaging procedure: Possible risks from cumulative effective doses of above 100 mSv
 • What are typical cumulative doses for patients with multiple CT studies?
 • Are they above 100 mSv?
Introduction

• Motivations behind the study:
 • Based on AAPM position statement on radiation from medical imaging procedure: Possible risks from cumulative effective doses of above 100 mSv
 • What are typical cumulative doses for patients with multiple CT studies?
 • Are they above 100 mSv?
 • The Joint Commission Diagnostic Imaging Requirements
Introduction

A 12. For organizations that provide diagnostic computed tomography (CT), magnetic resonance imaging (MRI), positron emission tomography (PET), or nuclear medicine (NM) services: The organization considers the patient’s age and recent imaging exams when deciding on the most appropriate type of imaging exam.

Note 1: Knowledge of a patient’s recent imaging exams can help to prevent unnecessary duplication of these examinations.
Methods

- Query UCLA CT dose database from Jan 2015 to Jan 2016
- Sort patients using a threshold of 100 mSv cumulative effective dose
 - Further sort patients using # of CT examinations
- Collect patient imaging history for
 - Top 10 patients in the “highest cumulative effective dose” category
 - Top 10 patients in the “highest number of examinations” category

Methods

- Imaging histories of top 20 patients were reviewed and investigated by 3 radiologists for:
 - Appropriateness of recurrent studies
 - Potential opportunities for reducing # of exams and dose
- Timed review process
Results

• A total of 34672 patients from Jan 2015 to Jan 2016
• 927 (2.7%) were identified with a cumulative effective dose of 100 mSv and above, from which 1/3 were trauma patients
• Top 10 highest cumulative effective dose: 376 to 842 mSv
 • Predominantly patients with IR/ablative procedures
 • 842 mSv – patient with 2 DX scans and 9 interventional ablative CT guided procedures

Results

• Top 10 highest # of CT examinations: 25 to 56 exams
 • Predominantly head trauma patients
 • 56 exams – 17 year old head trauma patient (deceased)
• 442 total reviewed individual CT scans
 • One possible CT scan that could have been avoided
 • scan was performed to assess liver transplant to look for flow and could have possibly been done with ultrasound as per reviewing radiologist
 • Review process of an average of 20 min per patient
Results

• There was no overlap between patients from each category,
• Top five most frequently performed examinations in a year
 • Abdomen/Pelvis w/ contrast
 • Chest w/ contrast
 • Oncology chest w/ contrast and Abd/Pel w/o contrast
 • Brain w/ contrast
 • Chest w/o contrast

Conclusion

• Cumulative doses can be surprisingly high
 • Academic medical center performing complex, unusual interventional procedures
 • #1 trauma center in the area
• Most exams appear to be warranted and necessary
 • Limited number of patients were reviewed as compared to the number of patients received cumulative effective doses of above 100 mSv
Conclusion

• Patients with highest dose and highest # of exams are not necessarily the ones who are getting needless scans
 • The most critically ill patients
 • Trauma patients – cannot be evaluated with physical exam due to intubation and sedation
 • Cancer patients – advanced stage cancers, requiring periodic restaging CT studies or ablation studies to improve quality of life

Lessons Learned

• Track doses – without data, can't see the problems
• Appropriateness of procedure/ Mortality morbidity review
 • Good documentation necessary to determine appropriateness

• Protocol modification… and protocol adherence
Lessons Learned

• Who determines exam necessity?
 • Referring physician?
 • Radiologist?
• Review Implementation?
 • Requires cross-disciplinary discussion and participation
 • Participants’ roles
 • Referring physician
 • Radiologists
 • Physicists
 • Administration?

Future Studies

• Focus on specific patient cohorts…
 • ED and oncologic patients – dose a priority in light of critical illness?
 • Peds
 • ED patients with minor injuries
 • Interventional patients
Thank you!
Questions…?

Contact: mbostani@mednet.ucla.edu