Reducing Radiation Dose in Abdominal CT Studies: ACR Dose Index Registry Data as an Impetus for Quality Improvement

Mark P. Supanich, Ph.D.¹
Nicholas Bevins, Ph.D.²
Daniel Myers, MD²
¹Rush University Medical Center - Chicago, IL
²Henry Ford Health System - Detroit, MI
Contact: mark_supanich@rush.edu
Disclosures

- Nothing to disclose
Background

• The Radiology division of the Henry Ford Medical covers imaging for 3 hospitals and a number of outpatient centers
• CT scanners include systems from 3 major vendors (n=13)
• Only data from scanners with the ability to reconstruct 64 slices were included in this study
 ▫ Vendor 1, n=1
 ▫ Vendor 2, n=2
 ▫ Vendor 3, n=5
• No scanners employed iterative reconstruction
Motivation

• Continuous quality improvement is a priority in the Radiology department
• Matching radiation dose and image quality for the same protocol across all scanners was identified as a goal by the radiologists and medical physicists
Tools Used

• eXposure™ software from Bayer Healthcare used to collect dose and protocol information
• Institutional participation in American College of Radiology (ACR) CT Dose Index Registry (DIR)
 ▫ Semi-annual reports of institutional dose metrics broken down by orderable
 ▫ Summary of dose metrics from 300+ participating institutions included
Collection of Baseline Data

- Institutional dose metrics and scan information collected by eXposure™ from 7/2011 through present including
 - CTDI\textsubscript{vol}
 - SSDE
 - Master Scan Protocol
- Participation in DIR from 1/2012 through present
- Protocols on scanners from same vendor all equivalent
- Image thickness within 0.25 mm on all scanners
- CT Abdomen Pelvis (with or without contrast) exams analyzed
 - Image quality reference parameter on multiphase exams are equal
Vendor 1 Baseline Data

CTDI\textsubscript{vol} Mean: 19.7 mGy
CTDI\textsubscript{vol} Median: 17.3 mGy
SSDE Mean: 21.7 mGy
SSDE Median: 20.4 mGy
N=389
Vendor 2 Baseline Data

CTDI\textsubscript{vol} Mean: 16.9 mGy
CTDI\textsubscript{vol} Median: 17.2 mGy
SSDE Mean: 19.3 mGy
SSDE Median: 20.1 mGy
N=2565
Vendor 3 Baseline Data

CTDI\textsubscript{vol} Values Vendor 3

CTDI\textsubscript{vol} Mean: 18.9 mGy
CTDI\textsubscript{vol} Median: 19.5 mGy
SSDE Mean: 21.6 mGy
SSDE Median: 21.9 mGy
N=2160
Notes on Histograms

- Vendor 2 offered a maximum tube current setting which was utilized resulting in a maximum CTDIvol of ~26 mGy for the standard acquisition.
- The output of Vendor 3’s systems were tube current limited to outputs of ~25 mGy for standard acquisition technique.
Identification of Area for Improvement

- Median CTDI_{vol} for CT Abdomen/Pelvis protocol from all scanners was determined to be above the median value reported by the ACR DIR.
- Studies from one vendor (Vendor 3) scanner were identified as the main contributor to the median CTDI_{vol} being higher than ACR DIR median value.
 - Highest median CTDI_{vol} of the vendors
 - Scans from Vendor 3 were nearly half of all scans
- Reducing the median CTDI_{vol} of the CT Abdomen/Pelvis studies from Vendor 3 scanners was identified as the area of desired improvement.
Intervention

- The image quality reference parameter used for the studies was identified (400 mAs/slice)
- The body imaging division head and two medical physicists collaborated on a plan to iteratively reduce the image quality reference parameter
 - On one scanner and one protocol
 - Without informing other radiologists
 - With continuous monitoring of image quality (particularly for patients of different body habitus)
Intervention

- The image quality reference parameter was reduced by 10% to 360 mAs/slice for 1 week
 - The image quality was deemed sufficient and no image quality complaints were registered
- The image quality reference parameter was reduced another 10% to 325 mAs/slice for 1 week
 - The image quality was deemed sufficient and no image quality complaints were registered
- The image quality was reduced to 300 mAs/slice for 1 week
 - The image quality was deemed JUST SUFFICIENT and no further modifications were made
- The new image quality reference parameter of 300 mAs/slice was applied across all Vendor 3 scanners and abdomen/pelvis protocols
Analysis

- Following the intervention data was collected over a 3 month period to compare to the 3 months of data used as the baseline.
- The use of the new image quality reference parameter resulted in a statistically significant reduction in radiation dose.
- Median value decreased by 3.9 mGy.
- Median value across all scanners decreased to below DIR benchmark.
Vendor 3 Baseline Data

CTDI\textsubscript{vol} Mean: 18.9 mGy
CTDI\textsubscript{vol} Median: 19.5 mGy
SSDE Mean: 21.6 mGy
SSDE Median: 21.9 mGy
N=2160
Vendor 3 Post Intervention Data

CTDI$_{vol}$ Values Vendor 3

CTDI$_{vol}$ Mean: 16.3 mGy
CTDI$_{vol}$ Median: 15.6 mGy
SSDE Mean: 18.2 mGy
SSDE Median: 18.2 mGy
N=2002
Example Case - same patient pre and post intervention

<table>
<thead>
<tr>
<th>#</th>
<th>Description</th>
<th>Scan Mode</th>
<th>mAs</th>
<th>kV</th>
<th>CTDIvol</th>
<th>DLP</th>
<th>Phantom</th>
<th>Type [cm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SCOUT</td>
<td>Survive</td>
<td>1</td>
<td>120</td>
<td>0.000</td>
<td>4.2</td>
<td>BODY</td>
<td>32 [cm]</td>
</tr>
<tr>
<td>1</td>
<td>SCOUT</td>
<td>Survive</td>
<td>1</td>
<td>120</td>
<td>0.000</td>
<td>4.2</td>
<td>BODY</td>
<td>32 [cm]</td>
</tr>
<tr>
<td>2</td>
<td>PORTAL VENOUS</td>
<td>Helical</td>
<td>231</td>
<td>120</td>
<td>14.92</td>
<td>733.7</td>
<td>BODY</td>
<td>32 [cm]</td>
</tr>
<tr>
<td>3</td>
<td>KIDNEY DELAY</td>
<td>Helical</td>
<td>363</td>
<td>120</td>
<td>12.95</td>
<td>539.3</td>
<td>BODY</td>
<td>32 [cm]</td>
</tr>
</tbody>
</table>

Pre-Intervention

Post Intervention
Notes on experience

• The iterative decrease of the image quality reference parameter was a useful way to adjust image quality and dose in a controlled manner

• Examining the image quality of patients with different body habitus was important
 ▫ The image quality on the thinnest patients was affected more than on the largest

• Radiation dose and image quality were more closely matched between Vendors 2 and 3 after the intervention

• A decrease in the number of cases with a “maxed out” tube current was noted
Conclusion

- Participation in the ACR DIR provides valuable data to institutions
- Semi-annual reports allow departments to perform an “apples to apples” comparison of their dose metrics for exams to those from peer institutions and data aggregated from all participating institutions
- Detailed exam specific data in the reports allows identification of protocols for potential radiation dose reduction
Thank you

Questions?

E-mail: mark_supanich@rush.edu