Medical imaging has improved the quality of healthcare and made it safer by providing less invasive methods for diagnosis and treatment. A pregnant patient and her fetus may require imaging for many different reasons that may or may not be related to the pregnancy. Imaging remains an essential tool to provide the best possible care to many pregnant patients.

Women who are pregnant or think they could be pregnant should always disclose this information to the radiologist, technologist and/or their ordering physician prior to any type of imaging test. The radiologist, in conjunction with the patient and the ordering physician, will balance the benefit of the intended examination against any potential harm to the fetus before performing any imaging test.

When considered essential, certain imaging examinations may require administration of an intravenous contrast material or radioisotope, in which case the risks versus benefits should be carefully considered.

Magnetic resonance imaging (MRI) and ultrasound (sonography) are types of imaging which do not use ionizing radiation, and are regarded as safe to the fetus in normal clinical usage, i.e., ≤ 3T MRI and without prolonged use of color/power Doppler in the first trimester.

Imaging studies that use ionizing radiation include X-rays, computed tomography (CT scans), fluoroscopy and nuclear medicine.

- Although the risk of radiation exposure during pregnancy is a common concern, a missed or delayed diagnosis may pose a greater threat to the woman and her fetus than any hazard associated with ionizing radiation.

- Radiologic procedures outside the abdomen and pelvis will not pose a significant risk to the developing fetus when standard precautions are taken. For example, a mammography examination would result in a fetal dose that is equivalent to a few extra days of environmental background radiation that any fetus will be naturally exposed to during gestation and the remainder of its life.

- For an examination where the developing fetus is in the field of view, there is no evidence that a procedure using routine parameters (<50 mGy) at any time during gestation will result in spontaneous miscarriage or developmental abnormalities, as stated by the American College of Obstetricians and Gynecologists.

- According to the International Commission on Radiological Protection (ICRP) radiation has been shown to increase the risk for some types of cancer in both adults and children. Throughout most of pregnancy, the fetus is assumed to be at about the same risk for carcinogenic effects as a child. The actual risk of cancer induction after radiation exposure where the fetus is in the field of view, for example a CT scan of the pelvis, is unknown, but thought to be very low. The likelihood the child will remain healthy with no adverse radiation effects is only slightly different from that of any other child.
If an unusually complex procedure with high levels of radiation has occurred, or if a patient has a medical condition that has required multiple exposures throughout pregnancy, then a medical physicist should be consulted to calculate the total dose to the fetus and any associated potential risks.

A termination of pregnancy on the basis of fetal exposure to ionizing radiation from properly supervised medical imaging during pregnancy is rarely justified in all but exceptional cases.

Conservative clinical management is the best way to minimize radiation risk in utero. If the benefit outweighs the risk and the decision is made to proceed with imaging using ionizing radiation, then radiation dose reduction methods should be implemented using the principal of As Low As Reasonably Achievable (ALARA). This is the principal that all imaging with ionization radiation should be performed using the least dose possible to obtain diagnostic quality images.

More information for patients is available at RadiologyInfo.org.

RSNA is a strong advocate for quality, safety and strict adherence to appropriateness criteria in medical imaging and radiation oncology.

Through its peer-reviewed journals and education programs, RSNA continually informs radiologists, medical physicists, radiation oncologists and other radiology professionals of the latest technologies and research developments designed to optimize dose and improve patient safety.