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Abstract

Technological developments and greater rigor in the quantitative measurement of biological features in

medical images have given rise to an increased interest in using quantitative imaging biomarkers to

measure changes in these features. Critical to the performance of a quantitative imaging biomarker in

preclinical or clinical settings are three primary metrology areas of interest: measurement linearity and

bias, repeatability, and the ability to consistently reproduce equivalent results when conditions change, as

would be expected in any clinical trial. Unfortunately, performance studies to date differ greatly in designs,

analysis method, and metrics used to assess a quantitative imaging biomarker for clinical use. It is

therefore difficult or not possible to integrate results from different studies or to use reported results

to design studies. The Radiological Society of North America and the Quantitative Imaging Biomarker
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analysis methods, metrics, and study designs that provide terminology, metrics, and methods consistent

with widely accepted metrological standards. This document provides a consistent framework for the

conduct and evaluation of quantitative imaging biomarker performance studies so that results from

multiple studies can be compared, contrasted, or combined.

Keywords

quantitative imaging, imaging biomarkers, reliability, linearity, bias, precision, repeatability, reproducibility,

agreement

1 Background

Most medical imaging procedures were originally developed and are used to detect and diagnose
disease with only limited attempts to quantify what was seen. Technical improvements in
instrumentation and software provide opportunities to quantify disease features including
measurement of changes in physical or functional response.1 Use of biomarkers is being pursued
vigorously to better evaluate preclinical in vivo features2,3 and to personalize clinical medicine4 by
quantitatively measuring morphological changes and defining function down to the cellular level.
Development of quantitative imaging biomarkers (QIBs) includes an assessment of the performance
of the QIB under study conditions. Each QIB is the end result of a defined image acquisition process
of a quantifiable image from an evaluable subject, a computer processing algorithm to reconstruct
that image, an automated or manual identification of the relevant regions, and usually an algorithm
used to measure and report the QIB (Figure 1). QIBs may be categorized into five general types:
structural, morphological, textural, functional, or physical property QIBs. The methods of
measurement may be as simple as electronic or physical calipers (e.g. length) or may be a
complex derived measurement of a functional parameter that describes the dynamic relationship
of the image measurement to an external factor such as time or stimulus (e.g. apparent diffusion
coefficient). Inherent to each QIB are factors that affect the measurement and consequently reduce

Figure 1. The quantitative image biomarker analytical process.
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its reliability. Each QIB is typically evaluated for reliability under study conditions by measuring
both the identifiable components of the random variability and any bias relative to a reference value.

Assessment of variability strives to evaluate each of the predicted major sources of variability
against some criteria that depend on the application. However, performance evaluations are too
often different from study to study resulting in confusing terminology and ad hoc performance
metrics that sometimes are actually unique to the study. Consequently, multiple studies of the
same or competing QIBs often cannot be compared against each other. In some cases, reported
QIB evaluations involve novel reliability metrics constructed solely for use with that study.
Inconsistent use of statistical metrics, use of different terms for the same metric, or use of the
same term for different metrics can be confusing and even contradictory and may be
inappropriate for adequate representation of the properties of the QIB.

Here we discuss how to subject QIBs to the same rigor as applied in the assessment of other
quantitative clinical measurements to ensure the reliability of the image measurements to objectively
evaluate ‘‘normal processes, pathogenic processes, or pharmacological responses to a therapeutic
intervention.’’5,6

Two summaries of QIB measurement variability are provided by the repeatability and the
reproducibility of the QIB. Repeatability refers to variability of the QIB when repeated
measurements are acquired on the same experimental unit under identical or nearly identical
conditions. Thus, the concept of repeatability attempts to capture the ‘‘pure’’ measurement
error of the QIB and can be assessed only approximately in practice. For example,
repeatability can be assessed as the variance of the QIB measurement when the marker is
obtained from repeated imaging of a nonbiological reference object (or phantom) under
identical experimental conditions. However when the QIB is obtained by repeatedly imaging
subjects and is based on actual biological features, the observed variance of the measurement
also includes subject-related variability due to a variety of behavioral, physiological, psychological,
and other factors that may have varied across individual measurements, even if the actual imaging
acquisition process remained unchanged.

Reproducibility refers to variability in the QIB measurements associated with using the
imaging instrument in real-world clinical settings which are subject to a variety of external
factors that cannot all be tightly controlled. For QIBs to be robust enough to enable reliable
medical decision-making or to use in controlled clinical trials, the QIB must be able to be
reproducibly measured over a range of conditions. Reproducibility conditions may be identified
and separated from measurement error. Some examples of different QIB reproducibility
conditions are different scanner types, different patient types (e.g. ethnicities), different clinical
sites, different image reviewers, and other conditions that may be specific to a study or to analysis
software.

In addition to repeatability and reproducibility variability, the QIB must also be assessed for its
ability to provide measurements that reliably represent the actual value of the targeted quantity. A
difference between the expected value of the QIB and a known or accepted reference value
(or measurand7) is the bias of the QIB and may be constant or nonconstant, varying by
conditions or true measurand values. The reference values used to measure this bias can
include knowledge of true measurements that may be available from physical or digital
phantoms, for example, or from a ‘‘gold standard’’ that is very likely a QIB that has been
widely used and accepted for that particular use. For the QIB to be used as a predictor of true
biological feature change or difference, the QIB must predictably reflect the true and biologically
relevant feature measurement (size, function, etc.) and any QIB bias should be quantified over the
entire measurable range of values.

Raunig et al. 3
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QIB technical performance for assessment of reliability is thus described by both the ability to
represent the true or accepted reference measurement without bias and to do so with minimum
variability.

This paper will present the issues and methodologies associated with assessment of the technical
performance of a QIB. In Section 2 the motivation and objectives of technical performance
assessment are discussed. Section 3 provides a brief summary of the metrology terminology used
in this paper. Section 4 outlines the basic steps in designing a study to assess technical performance.
Section 5 covers assessment of linearity and bias; Section 6 discusses repeatability and Section 7
discusses reproducibility. Section 8 summarizes the technical performance issues and Section 9
discusses future directions for developing QIB technical performance metrology concepts.
References are found in Section. Section 10 is the appendix and contains data examples for
repeatability and reproducibility analyses.

2 Motivation and objectives

This paper and the companion metrology papers7–10 are motivated by a need to standardize and
optimize metrological terminology and performance evaluations of QIBs and is distinguished from
an evaluation of diagnostic, prognostic, or predictive performance for clinical utility. This effort is
sponsored by the Radiological Society of North America QIBA activities to develop QIBs for use in
assessing the extent and change of disease over time. QIBA is an initiative to advance quantitative
imaging and the use of imaging biomarkers in preclinical studies, in clinical trials, and in clinical
practice by engaging researchers, healthcare professionals, and industry with the specific mission to
‘‘improve the value and practicality of quantitative imaging biomarkers by reducing variability
across devices, patients and time.’’11

The goal of this paper is to provide a framework for researchers developing QIBs (for example, in
the context of a QIBA Profile Claim) and assessing their technical performance. To date, evaluation
of technical performance methodologies for QIBs has been at the discretion of individual
investigators. This is in contrast to development of laboratory measurements from blood or
tissue, which are guided by established standards organizations such as the Clinical Laboratories
Standards Institute (CLSI). To provide this framework in a consistent, rigorous, and broadly
acceptable form, the QIBA Technical Performance Working Group has worked within metrology
standards set by several international organizations including the Bureau of International Weights
and Measures (BIPM) and the National Institutes of Standards and Technology. Metrology is
defined by the BIPM as ‘‘the science of measurement, embracing both experimental and
theoretical determinations at any level of uncertainty in any field of science and technology.’’12

This paper addresses the technical performance of a QIB once a validated algorithm derives the
measurement. Though technical performance is tied to clinical utility, the performance of the QIB to
predict clinical outcome is not addressed here.

The QIBA Technology Performance Working Group was established to arrive at a reasonable
consensus among clinical, technology, and statistical imaging experts to establish the metrology
standards necessary to evaluate a QIB for use in a patient population. The objectives of the
group’s efforts are to achieve the following:

. Define technical performance metrics needed to measure and report technical performance of
a QIB;

. Define the methodologies to arrive at those metrics; and

4 Statistical Methods in Medical Research 0(0)
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. Describe the study designs and considerations necessary to arrive at a meaningful and
interpretable assessment of technical performance of a QIB.

These objectives directly relate to the development of a QIBA Claim by establishing the conditions
under which the QIB can be reliably used. QIBA Profiles are syntheses of prior research and original
research that propose standards for the use of specific QIBs in in vivo studies including animal studies,
clinical trials, andmedical decisionmaking and are meant to specifically document the performance of
a QIB and the conditions for which that performance applies.13 Implementation follows directly from
the design of the algorithm and technical performance assessments. Therefore, since study design is
the underlying foundation for any technical performance study, every statistical concept or
methodology discussed here will be directly tied to considerations surrounding study design.

Specific QIBA Profiles and finalization progress including public comment status may be found at
the QIBA Wiki website.14

3 QIB technical performance terminology

General terminology for metrology concepts involved in the assessment of technical performance is
found in the companion paper on QIB terminology.7 A distinction is made here between
quantitatively meaningful and clinically meaningful when defining the technical performance of
the QIB. Quantitative technical performance drives the QIBA Profile that defines the claim
whereas assessments of the clinical meaningfulness of a QIB must be presented to qualify the
QIB for a claimed clinical use.

This paper will use the following terminology for the different values used in a technology
performance assessment for experimental unit i¼ 1 . . . , n, and k repeated measurements:

. QIB Measurement: Yi ¼ fyi1, yi2, . . . yikg;

. Measurand (True Reference Value): Xi ¼ fxi1,xi2, . . . xikg;

. Imperfect Reference Value: Zi ¼ fzi1, zi2, . . . zikg.

The definition of a QIB performance metric follows the basic premise that for a given set of
measurements, the difference

�yið1, 2Þ ¼ yi1� yi2 ð1Þ

or ratio

yi1=yi2 ¼ yj1=yj2 ð2Þ

between two measurements has the same biological meaning for all i and j. This is distinguished
from the difference between two ordinal scale scores that assign increasing integers to increasing
levels of severity (e.g. 0¼none, 1¼ slight, 2¼mild, 3¼moderate, 4¼ severe). The relationships
shown in equations (1) and (2) are true for ratio variables, which may be simply defined as when
a value of zero (0) represents the absolute absence of the feature being measured. Ratio variables are
further described in detail in Kessler.7

The three metrology areas that most directly address the question of technical performance can be
found in detail in International Organization for Standardization (ISO) guidelines12 as well as QIB
specific guidelines described in Kessler.7 We offer the following as practical clarification.

Raunig et al. 5
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Bias/Agreement/Linearity: The ability of the QIB to unambiguously reflect a change in the disease
state as represented by an adequate change in the QIB. In many QIB cases, the truth may not be
known or even technically feasible to measure and the imaging metric may not have a linear
response against a reference measurement.
Repeatability: The ability of the QIB to repeatedly measure the same feature under identical or near-
identical conditions. These studies are often referred to as test–retest, scan–rescan, or ‘‘coffee-break’’
experiments.
Reproducibility: The reliability of the QIB measuring system in different conditions that might be
expected in a preclinical study or clinical trial or in clinical practice (e.g. multiple sites, etc.). The
technical assessment of algorithm reproducibility performance is specifically dealt with in
Obuchowski.8

Measurand/Reference: A measurand is the true value of the quantity intended to be measured; a
reference is the true or accepted value of the measurand; a theoretical or established value based on
scientific principles; an assigned value based on experimental work of some national or international
organization; or a consensus value based on collaborative experimental work under the auspices of a
scientific or engineering group (ISO 5725-1). To avoid confusion, the term ‘‘measurand’’ will be used
when referring to a prescribed true value and the term ‘‘reference’’ as the actual value used as a
comparator to the QIB measurement.
Repeated measures/Replicates: A measure is repeated if it is independently acquired on the same
experimental unit and, if no change in the measurement is expected; the repeated measurements
most often represent the total measurement error. Replicate measurements are obtained from
different experimental units for the same or equivalent measurand and represent the between-
subject variability.

4 Technical performance assessment design

The following steps are recommended when designing a performance analysis of a QIB. These steps
reflect fundamental statistical experimental design principles and permit appropriate collection of
the data necessary to address the different technical performance objectives defined in the preceding
sections. Not all steps may be applicable in every technical performance study, but they are
presented here as a general guideline for most QIB reliability assessments.

Step 1: Define the QIB and its relationship to the measurand

Define the measurement to be acquired, the quantity to be measured (measurand), and the
expected relationship between the QIB and the measurand. For example, ‘‘FDG uptake in
gastric lesions will be measured as the Standard Uptake Value adjusted by lean body mass
(SUVlbm) and is a measure of the integrated metabolic rate within a specified region of
interest (ROI).’’

Step 2: Define the study claim or question to be addressed in the analysis

State the study claim either in the form of a hypothesis, general question, or statement of bounds on
technical performance. Study hypotheses do not have to be in the form of a statistical hypothesis.
For example, a claim may begin as a statement such as ‘‘FDG uptake in gastric lesions as measured
by SUVlbm will increase proportionally with concentration of FDG and will vary by less than 20%’’
is an acceptable hypothesis. It is then translated to a more specific Profile claim that defines

6 Statistical Methods in Medical Research 0(0)
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conditions under which the claim is expected to be valid, including the particular patient preparation
and image acquisition and analysis conditions to be investigated.

Define the statistical hypotheses, if applicable, including criteria for accepting or rejecting the
hypotheses. While it is perfectly valid to formulate the problem as one of testing a statistical
hypothesis, most QIB technical performance studies will focus on estimation and bounds on
performance.

Define sub-strata that are identified within the claim that will be either modeled or tested in the
study. For example, strata may include patient demographics, sites, or regions for testing, reader
qualification, etc. depending on the applicability to the study question or limitations of the study.

Step 3: Define the experimental unit

Whether the patient/subject is the experimental unit depends on the study question. For example,
tumor imaging studies may have the lesion or lesion nested within patient as the measurement unit
of interest, while bone mineral density measurements of the hip have the patient as the experimental
unit, though imaging just the hip or a specific region of the hip. The selection is consequential for
statistical analysis and eventual inference and needs to be defined with care and synchronized to the
claim and Profile specifications.

Step 4: Define the measures of variability to be estimated

The statistical measures of performance, including variability, bias, and linearity, must not only be
appropriate but also useful when planning a future study that will use the QIB as a study aid or
study endpoint. All QIB metrics should also include confidence bounds provided for any estimated
parameters.

Step 5: Specify the elements of the statistical design

Elements of the statistical design include sample size, number of reviewers, technologists, clinicians,
patient/subject population, choice of reference measurement method (for bias and linearity studies),
range of measurand values, reproducibility conditions to be measured, repeatability time intervals,
washout periods, and other conditions that will have implications in the eventual employment of the
QIB in a controlled study. Sample size should be justified by a statement on study power or precision
of performance metric estimate, as applicable. When sample size is driven more by convenience (or
budget) instead of statistical power or precision of estimation, this should be stated and realistic
power or confidence interval (CI) width and coverage estimates should still be provided.15 An
adequate description of the study design provides the necessary context for the eventual use of
the performance metrics, insuring that it will be possible to combine, compare, or contrast results
from different studies.

Step 6: Determine the data requirements

Study data generally fall into two categories: prospectively and retrospectively collected data. The
type and amount of data collected is often determined by the constraints of the study. While
circumstances may change the final conclusions based on the data that are actually possible to
collect, both retrospective and prospective QIB performance analyses should start by
predetermining the desired data to set up inclusion and exclusion criteria. An example is the use

Raunig et al. 7
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of selected archived imaging data for measurement and analysis. The number and types of
acceptable images may be (and often are) different than what is available.

Each of the parameters desired as an output from the designed study must consider not only the
number of experimental subjects (or experimental units) but also the data range, distribution of the
data, number of repeat measurements for repeatability, and the number of conditions under which
reproducibility will (or can) be assessed.

Step 7: Statistical analysis

Two common elements of a statistical plan for QIB studies are choice of random or fixed effects to
represent various factors affecting variability, and specification of stratification/blocking factors, if
any. Random effects models may also include the use of random slopes/random intercepts, e.g. for
study subjects followed longitudinally. Repeatability studies that involve patients or subjects will
very often consider the subject/patient to be a random factor. Reproducibility studies will likely
include fixed effects when the possible levels of a reproducibility factor are few and not randomly
chosen. Smaller reproducibility sets, such as measurement algorithms or tertiary care facilities in a
defined geographic region are often not chosen at random and usually will be treated as fixed effects.
A more complete discussion may be found in Kenward and Roger.16 In general, random effects
randomly choose from a large population of levels of a factor while fixed effects do not randomly
select, though the distinction is not always clearly defined in practice.

Testing of a null hypothesis and estimation of specified performance metrics will be the two most
common study goals. This will follow directly from whether the study question is formulated as a
statistical test, as an estimation task or both. Hypothesis tests have, for various biomarkers, included
superiority, noninferiority, and equivalence alternative hypotheses, and the appropriate choice is
dependent on the QIB claim. A detailed examination of QIB hypothesis tests is found in the QIB
algorithm comparison companion paper.8

One common theme throughout this discussion is the hierarchical progression of study planning
for each QIB. For example, the definition of the study hypothesis directly dictates many of the
downstream decisions. For this reason it is very important to consider all of the issues outlined in
this section during the study design phase and to iterate through the process to ensure the claims are
consistent with the study design and thus to provide the greatest chance of drawing useful
conclusions from the study.

5 Bias and linearity

An ideal QIB provides an unbiased estimate of a true characteristic, or a value derived from it, over
the entire range of expected values (the measuring interval) defined in the claim. For example, when
measuring the volume of a solid tumor, the measured volume should, within random measurement
error, represent the actual volume, or measurand, of the lesion defined, regardless of the tumor’s
shape, size, or composition within the context of the claim. An example of a well-defined reference is
a validated phantom.

Integral to the calculation of QIB bias is defining the functional relationship of the QIB to the
measurand, when available, or to an estimate of the measurand for imperfect references. Represent
this relationship by

E YjX ¼ xð Þ ¼ f xð Þ

8 Statistical Methods in Medical Research 0(0)
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If Y exhibits linearity with X, then a change in x will, on average, be reflected as a proportional
change in Y. This is stronger than saying that a change in X will translate to a change in Y. For
example, rate of change with x for a polynomial function of order greater than 1 varies depending on
the true value of x; this means that the same change in x will not always correspond to the same
proportional change in E(YjX¼x)¼ f(x). Furthermore, these higher order functional relationships
are not guaranteed to be monotonic.

The ideal relationship between Y and the truth, X, is linear with slope equal to 1. However,
imaging biomarkers, especially in an early stage of development—and calibration—may not always
yield the identity slope. Imperfect references will often not yield slopes of 1.0 although a proportional
relationship (i.e. linearity) is likely to hold approximately within a specified range of measurand
values. The proportional relationship between the measurement and the measurand defines not only
the linear relationship of the QIB and truth but also provides information to the end user about the
sensitivity of the QIB to measure a change in measurand value. Examples of several possible
relationships between the QIB and the measurand are shown in Figure 2. For the same variance,
a slope less than 1 indicates less ability to detect change and conversely, a slope greater than 1
indicates greater sensitivity to changing values. Relationships with curvature have a nonconstant
sensitivity to change over the range of true values. Actual sensitivity to change also depends on
variability and will be discussed in later sections.

Figure 2. Plot of phantom volumes versus measured volumes with identity line (dashed black). Values were taken

from QIBA 3A17 data on phantom volumes and augmented with simulated data for illustration purposes.

Raunig et al. 9
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If the relationship is well approximated by a line and the estimated slope is close to 1, then the
intercept of the estimated line is an estimate of the bias. The derived measurement of change, such as
the measured change in tumor volume over time can then be effectively used as an estimate of the
true change over time. In a clinical trial, the derived measurement can be used to compare two
treatment arms for efficacy. If the slope is much different than 1 then bias is a function of the
measurand and change measurements will be a function of the values themselves and the Profile
claim may need to limit the use of the QIB.

The results from the regression applied to the subset of data in Figure 2 exhibiting constant bias
are presented in Table 1. Determination of statistical significance may be highly influenced by the
total number of samples, the range of the data, and high leverage values. Parameter estimates should
also be interpreted in the context of how the QIB measurements would be used in practice. In the
case presented in Table 1, the slope is significantly different than 1 (p< 0.001) but this minor
deviation might not have important implications in practice. The technical performance
assessment of the QIB measurement system should address both bias and linearity. Both
performance aspects affect the application of the QIB to clinical decisions that rely on an
absolute assessment of the true value of a measurand, Nonconstant bias, including nonlinearity
as a special case, affects assessment of a change in the measurand. Evaluation of the impact of
intercepts and slopes should not rely solely on the p-values but also on the actual estimates and their
standard errors as well as the clinically relevant range of the measurand and the variability in QIB
measurements.

5.1 Bias estimation

QIB bias, � xð Þ ¼ EðYjxÞ � x, is defined as the difference between the expected value of the measured
variable Y and the true value x. If within a specified range, the QIB is can be expressed as a linear
function of the true measurand plus an additive error

y ¼ ð y0 þ EÞ þ xð1þ bÞ ð3Þ

where " is the random measurement error with mean 0, then bias can be defined as a function of the
true value x as

�ðxÞ ¼ y0 þ xb ð4Þ

When the truth is available through the use of digital or physical phantoms or a gold standard,
the measurand is assumed to be known without error and bias is true bias. However, in practice,
a true reference will rarely be known in QIB studies and a pragmatic approach using an agreed
upon reference standard method must be taken knowing that only relative bias or linearity is
being assessed. Therefore, it is very likely that the measurand value is determined by an

Table 1. Regression results of constant bias for measurement versus phantom data.

Term Estimate Std Error t Ratio Prob> jtj

Intercept 332.087 49.228 �6.75 <.0001

Log(Volume (true)) 1.034369 0.007306 141.57 <.0001
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imperfect reference, z, which is measured with some error, typically known or previously
estimated

y ¼ ð y0 þ EÞ þ ðzþ vÞð1 þ bÞ ð5Þ

where � is zero mean random measurement error in z. The relative bias is defined similarly as a
function of the expected value of the reference standard

� zð Þ ¼ y0 � zb ð6Þ

Reference standards such as validated phantoms may be measured with negligible error, but it may
often be the case that the QIB is being considered to replace a less-reliable reference. It is important
to consider the imprecision of the reference and its effect on the association of the QIB to the
reference. Repeated reference measurements and error-in-variables methods are needed in these
cases.

For purposes of discussion, bias is considered here to be an additive effect where ratio QIB bias
may be treated as additive under a log transformation. The bias can be classified as either constant
or nonconstant:

. A constant bias is present if the QIB measurement exhibits a fixed deviation from the
measurand and is not independent of the true values. A constant bias is indicated in Figure 2
(blue diamond line) with a fitted line that is parallel to the identity line and the intercept is an
estimate of the bias.

. A nonconstant bias is a difference from the true value that is dependent on the measurand in ways
that are not always able to be determined, but would be consistently observed to have the same
functional relationship to the true value in identical experiments. Nonconstant biases are
particularly important to characterize carefully when there is interest in assessing changes in
QIBs because the different biases will not ‘‘cancel out’’ in calculation of a change. Any
curvilinear relationship as well as a linear relationship that is not parallel to the identity line
will have a nonconstant bias.

The use of the terms systematic and nonsystematic bias is present throughout the literature and
generally used to describe constant and nonconstant bias, respectively. However, the terms
systematic and nonsystematic are not always used this way and so can present some confusion.
Therefore, we will characterize bias as constant or nonconstant for the rest of the paper.

5.1.1 Data transformations

It may be possible to use a data transformation to stabilize nonconstant bias and reduce or eliminate
the heteroscedastic nature of the QIB. Transformations such as the log-transformation may also
typically dictate the form of the bias. For example, a bias that is proportional to the true value with
no constant offset component becomes constant in x when a log-transformation is applied.

Very often the variance of a QIB increases with increasing measurand values and an estimate of
overall variance may not be appropriate for the QIB values observed. A data transformation such as
the log-transform may therefore be useful when estimating the variance as a function of the estimate
of the measurand. For example, the variance of the log-transformed data may be back transformed
to an estimate of the coefficient of variation where the standard deviation (SD) is directly
proportional to the mean.

Raunig et al. 11

 at DUKE UNIV on June 12, 2014smm.sagepub.comDownloaded from 

http://smm.sagepub.com/


XML Template (2014) [28.5.2014–2:14pm] [1–41]
//blrnas3/cenpro/ApplicationFiles/Journals/SAGE/3B2/SMMJ/Vol00000/140066/APPFile/SG-SMMJ140066.3d (SMM) [PREPRINTER stage]

Appropriate transforms may be chosen from a priori knowledge of the measurand or may use
power transform statistical methods, such as the Box-Cox transform to help with linearity and
alleviate heteroscedasticity.18 Some consideration should be given, however, to interpretation of
the resulting measurements when transforming the QIB. Transformations may also introduce a
nonconstant bias and should be approached cautiously with an assessment of the effect of the
transform within the measuring interval. A common example is the custom of adding 1 to the
values of data that include 0 in the measurement prior to taking the logarithm of the number.
This practice has a large effect on small measurement values and should not generally be used. A
practical rule for transforms is that raw measurements that have a nonzero intercept for a
measurand value of 0 will not be transformable unless restricted over a limited range of
measurand values.

An additional common misuse of transformations is to reduce the presence of outliers without
regard to the actual underlying QIB distribution. Rank preserving data transforms are sometimes
necessary in order to comply with the assumptions of normality in statistical data analyses and
should not be used to hide or obscure values for convenience or to redefine a value as a nonoutlier.
The treatment of outliers is addressed in more detail in Section 5.1.3.

5.1.2 Bias estimation considerations

Choosing the number, range, and distribution of measurands. The sample size, range, and distribution of
the measurand will be a critical design factor and will affect the estimation of bias throughout the
range of expected values. These should adequately cover the claimed measuring interval of the
imaging measurement system. The term measuring interval is defined in Kessler7 as the range of
the measurand in which an incremental change in the value of the measurand should result in a
change in the QIB measurement. The lower and upper endpoints of the measuring interval are the
lower limit of quantitation and the upper limit of quantitation and can be described as the limits
within which the QIB has acceptable bias and precision. Acceptable limits will be determined by the
context of use. Figure 3 is a typical depiction of lower and upper limits of quantitation. Lower QIB
measurement levels that approach the background noise may see an increase in variability while
large QIB measurements may be physically limited and be characterized by low variability, also
known as saturation bias. The measuring interval is characterized here as a region of relatively linear
relationship to the measurand.

When possible, bias assessments should use at least two and preferably three or more
experimental replicates carried out for each of several settings of ‘‘truth’’ as measured according
to a standard reference. This might include phantoms with similar measurands, phantoms placed in
different locations or, in the case of patient-obtained data, values that are reasonably close.
Replicates are different than repeated measures which are used to define variability within a
single experimental unit. Replicate values are best defined when determining the experimental unit.

Various numbers of measurand levels have been proposed, but sources for laboratory assays
recommend at least five to seven levels.19 In phantom studies these should be roughly equally spaced
over the measuring interval to minimize the variance of the regressor parameter estimates and to
identify departures from linearity throughout the entire measuring interval. At least three replicates,
as opposed to repeated measures of the same replicate, are recommended at each phantom level to
provide sufficient degrees of freedom for stable estimates of precision of the estimates.20

Replicates may use different phantoms if possible and may also use phantoms in different
orientations, configurations, or conditions. A similar effect can be achieved in patient studies by
selecting patients to represent the whole spectrum of clinical characteristics (such as extent of disease
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or age) that are related to the QIB. When there is reason to believe that bias would change more
rapidly in certain regions than others a higher concentration of measurand values in those regions of
expected rapid change is necessary to complete the performance assessment.

Plotting the data. A bias assessment typically begins with visual assessment of a plot of the
measured values (y) against the reference values (x) (Figure 2). Individual replicate values should
be plotted in addition to the means that summarize the replicates at each x value. Bias at each
reference value can be assessed by comparing the mean of the replicate measurements of y to the
reference value or, in the event that replicate measurements are not available, the prediction
regression estimate. The bias estimates should also include confidence bounds that reflect the
variability of the replicates or of the regression prediction. Their inclusion is necessary to provide
the ability to assess the quality of the bias estimate and indicate a need to augment the bias data or
that variability of the QIB is the priority technical performance issue to be addressed prior to an
assessment of agreement to the measurand.

When bias is defined by the true values, X, then bias may also be plotted against the true values to
determine the nature of the bias. An example is shown in Figure 4 where the slope is not equal to 1.0
and the bias increases with increasing true values.

5.1.3 Outlier analyses

Any assessment of technical reliability of a QIB must also include an assessment of the prevalence
and impact of outliers which could preclude any further testing. Estimates of bias from either
replicate means or regression prediction estimates can be greatly influenced by isolated aberrant
points that may be due to chance occurrence of extreme values, procedural errors in data acquisition
and recording, an unexpected mixture of populations, or an unexpected test deviation. Methods to
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Figure 3. Measuring interval analysis of bias. Note that the values measured beyond the measuring interval are

necessary to define the interval.
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distinguish between chance occurrence and erroneous values include both graphical examination
and statistical outlier detection tests. There is an abundance of outlier detection methods in the
literature as well as substantial developments in outlier discrimination. ISO as well as the CLSI have
compiled a set of commonly available plots and tests for single and multiple outliers.21–23 While
multivariate QIBs are under development by several researchers, this section describes univariate
outlier detection only. However, multivariate outlier detection methods are available and may be
more appropriate when employing multiple endpoints. A general review of multivariate outlier
detection methods may be found in Penny and Jolliffe.24

A general methodology for outlier analysis and reporting is described here as a basic set of steps
consistent with metrological concepts that are recommended when describing technical performance
of a QIB.

(1) Screening: Visual inspection of the plotted data
(a) Box–whisker plots with outliers plotted.
(i) IQR¼Q3–Q1, where Q3 is the third quartile, Q1 is the first quartile
(ii) QIBOutlier<Q1� 1.5 � IQR or QIBOutlier>Q3þ 1.5 � IQR
(iii) May be generalized for nonsymmetric distributions about the median21

(b) Distribution Plots: Histogram, dot, stem-leaf, probability plots, etc.
(2) Statistical tests

(a) Normal distribution
(i) Generalized Extreme Studentized Deviate25 is generalization of Grubbs test that also tests

for more than one outlier that preserves the Type I error for l outliers of a predetermined
maximum of m outliers where 1� l�m
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Figure 4. Bias plotted against Truth for the relationship Y¼ 1.4 �Xþ " with �2
¼ 1.0.
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(ii) Upper/lower fourths: A modified IQR test for normal data described in detail in ISO
16269-4.21

(b) Nonnormal distributions
(i) Lognormal: Logtransform data to a normal distribution
(ii) Exponential distribution: Greenwood test for existence and sequential identification of

outlier observation
(c) Variance uutliers
(i) Cochran’s test assesses the maximum variance against a critical value as an outlier when all

SDs are estimated from identically sized cohorts found in many statistical analysis
packages and easily calculated using simple spreadsheet functions as

C ¼
s2maxPp
i¼1 s

2
i

where s2i is the variance for each variance strata and s2max is the maximum variance. Critical
values for C are available in many statistical texts including Snedecor and Cochran.26

(3) Identify procedural errors or QIB quality issues that may have led to the identified outlier. Data
transcription or data translation errors that are not inherent in the acquisition of the QIB should
be removed from the analysis and reported.

(4) Evaluate impact of outliers that could not be attributed to procedural or recording errors and
therefore cannot be ruled out as rare but valid QIB observations.
(a) Descriptive statistics for bias and variance.
(b) Regression parameters21,27

(i) Difference in Fits (DFFITS)
(ii) Cook’s distance

Point-wise deletion of outliers should be used with great caution when using an imperfect
reference (i.e. patient data) since in most cases it will be difficult to ascertain the cause and the
outlier may actually reflect the reliability of the QIB.

Bias estimation methods. If the degree of bias and variability appear approximately constant, over
the measuring interval, then any bias can be estimated as the simple arithmetic average of the
individual differences between measured value and reference value. If the bias is relatively
constant over the measuring interval but the variability appears to depend on the true value, then
a weighted mean, inversely weighted by the sample variances computed at each reference value, may
be used. However, technical performance studies are very often conducted with only a few replicates
at each measurand and variance estimates themselves will be unreliable. Therefore, when the
variances are estimated from a small number of replicates the method of weighted means should
not be used. Instead, a variance stabilizing transform is preferred. Tests for equal variances across k
samples may be done by visual inspection or by formal hypothesis tests such as Bartlett26 or
Levene28 tests, though tests of equal variance are sensitive to the number of replicates and
generally are low powered and thus should be interpreted with caution.

Often a nonconstant bias is induced by incomplete calibration. Root causes may include an image
processing algorithm that assumes an inappropriate form of calibration curve (e.g. linear) or failure
to apply an appropriate transformation (e.g. logarithmic) to the raw signal. Nonconstant bias
should first be addressed by calibration adjustments to make the bias closer to constant.
Transformations to adjust bias may be difficult to interpret or not be universally applicable and
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so are not recommended as a first choice. If adjustments do not satisfactorily resolve the
nonconstant bias, then the bias needs to be carefully characterized as a function of the true
reference value (i.e. the measurand) and any other explanatory factor variables. If nonconstant
variance is present in addition to nonconstant bias then sophisticated statistical methods may be
required to reliably estimate the nature of the bias such as described by Carroll and Ruppert.29

Plots of variance with respect to the reference values (or means as appropriate) are valuable
methods to assess QIB variance. Two plot options are shown in Figure 5.

Coverage Probability (CP). CP is useful in describing the impact of QIB bias and variability to an
acceptable difference (d). CP(d) is the probability that the absolute difference between a
measurement and the true value of the quantity is less than an acceptable difference d. Thus,
CP(d) is more directed to describing the impact of the variability of the QIB about the
measurand than a naı̈ve reporting of prediction intervals and so provides the QIB user with a
practical sense of the performance of the QIB with respect to the standards needed for a
particular study. Technical performance of QIBs for bias should include a measure of CP(d) for
a specified clinically or scientifically acceptable value of d. A detailed description of the application
of CP(d) is found in Barnhart and Barboriak30 and Barnhart et al.15

5.2 Linearity estimation

Bias is only independent of linearity when the measurand is zero (0). Image acquisition
fundamentals and noise inherent in the image acquisition can provide a background signal that
results in a QIB that is always positive and not equal to zero, or a bias at the intercept. Linear
response from the intercept will result in an increasing, nonconstant bias if the slope is not exactly
equal to 1.0. Nonlinear response of the QIB to the measurand will have a more complex relationship
to the measurand. Therefore, the assessment of linearity is directly linked to the assessment of bias
and both should always be presented when assessing either for technical performance.

5.2.1 Measuring interval and the range of linearity

Linearity may hold over the entire range of the measuring interval or only over some subinterval.
The linear range will be defined here as the range of the measurand for which the imaging system

Figure 5. QIB measurement variability plots for comparison to the reference values.
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produces results that are within an acceptable tolerance of a linear relationship between true and
measured values.

Assessment of linearity should follow an approach similar to that for assessment of bias. In
addition to the steps of variability and outlier assessment described earlier for bias assessment,
the examination should include an assessment of whether the measured values (y) are linearly
related to the measurand (x), based initially on a simple scatterplot. The linear relationship might
hold over the entire measuring interval or it might be piecewise linear and restricted to one or more
subintervals. Determination of the linear range can be somewhat subjective, and it may be necessary
to iterate between tentative specification of the linear range and formal testing for linearity within
the specified range. A cross-validation of the results should be conducted for a final linearity
assessment in an independent experiment to avoid the possibility of exaggerating the adherence to
linearity within a data-derived linear range.

5.2.2 Linear relationship to truth

Many studies to assess linearity that are phantom based will compare the linear slope to the identity
slope of 1. Since the comparison is to the truth, nonlinearities or slopes other than 1 are an
indication of QIB discrepancies and should be investigated further for calibration errors. When
comparing the QIB to phantom or truth data, 9–11 levels of the true value are consistent with
recommendations that have been proposed for linearity assessment for laboratory assays19 but the
optimum number will ultimately depend on the specific characteristics of the QIB. If linearity is
being established de novo, more levels should be considered, whereas around nine levels might be
sufficient to confirm linearity of an imaging measurement system for which linearity had been
previously established but measurement conditions changed such as updates, site change, etc. The
measurand levels should typically be roughly equally spaced over the measuring interval but it may
be necessary to concentrate additional observations in areas that may violate the linear assumptions
such as the upper and lower ends of the measuring interval. Ideally three replicates should be run at
each level of the measurand.

An example of replicate measurements of linearity compared to a known or precisely determined
reference is derived from the QIBA 3A challenge31 and found in Section 10.1. There are five
replicates for each measurand and a total of 31 different measurand levels. The results are plotted
and summarized here. In this example, there is no evidence of bias since the intercept is not
significantly different from 0. Also, it is important to note that the hypothesis test for the slope,
shown as the term ‘‘measurand’’ is for a comparison of the slope to 0 and not 1.

5.2.3 Linear relationship to a reference

Establishing a linear relationship to a measurand will depend on the relationship of the reference
value to the truth, which is not often known. The linear relationship to the reference is primarily
concerned with deviations from linearity (piecewise linearity or curvature) and should not typically
compare the slope(s) to a superiority threshold. While slopes relative to the reference can be an
indication of increased sensitivity to changes in the QIB, the same can result if the QIB is simply a
scalar multiple of the reference.

5.2.4 Linear estimations methods

Testing for curvature. A formal assessment of linearity using sequential tests of polynomial fits to
the plot of mean QIBs versus reference can also be conducted. This is an approach recommended in
CLSI EP06-A for testing linearity for laboratory assays.19 The assessment begins with fitting a third
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degree polynomial to the mean QIBs as a function of reference values, followed by testing the
coefficient of the third-order term to determine if it is significantly different from zero. If this test
result is statistically significant, then the hypothesis of linearity is rejected in favor of evidence for
curvature. If the test fails to reject, a second–order polynomial is then fit to the data and the
coefficient on the second-order term is tested. If the coefficient on the second-order term is
statistically significantly different from zero, the hypothesis of linearity is rejected. If the test fails
to reject, it is concluded that the hypothesis of linearity cannot be rejected. A finding of a significant
polynomial degree of two or greater does not imply that the true underlying relationship is best
described by a polynomial but only as evidence for local curvature. Conversely, the failure to reject
curvature by the higher order coefficients may be due to the small number of samples and the low
power to declare significance. In any test of bias and linearity, the sample size and measurand
distribution must also be included in the description of the results.

A test of the slope in the linear regression would then follow to establish whether there is a linear
trend or no trend in the data. Finally, there must be an assessment of the variability of the
measurements around the line to establish whether the imaging system produces results that are
reliably within an acceptable tolerance of a linear relationship between true and measured values
with acceptability standards defined by the profile. It is not necessary, or even advisable, to fit a
regression line with intercept forced to zero. If there is any curvature near the lower end of the range,
a better overall approximation to the relationship would be obtained allowing estimation of a
nonzero intercept. Even when the true intercept is zero, a single degree of freedom is used to
include the intercept with only a small effect on precision of the regression parameter estimates.

Choosing the number, range, and distribution of measurands. The recommendation to collapse the
replicates at each reference value to a single mean rather than use the replicates to obtain an
estimate of pure error in the regression analysis is often made and debated. This recommendation
is motivated by the desire to separate the impact of precision from the underlying functional
relationship and may be important when the presence of outliers may have too much weight in
the estimation of the parameters. While the linear relationship may be strengthened by summarizing
replicates by the mean or median, it will be important to assess linearity in the presence of replicate
variability. Additionally, for well-behaved normally distributed replicates, the loss of error degrees
of freedom when using collapsed data will result in confidence intervals of the parameter estimates
that will be very nearly identical to those from the raw, un-collapsed analysis. Therefore, all of the
replicates at each measurand should be used as the default. Collapsing or summarizing replicates
may also be done as an additional analysis. Analyses for replicate data that are not normally
distributed are covered in the next section on methods.

Linearity methods. Other modifications to the regression approach might need to be considered.
When nonlinear relationships are identified, it should be investigated whether data transformations
can be applied to achieve approximate linearity. Additionally, it may be useful to apply
transformations to stabilize variance, or it may be necessary to use weighted regression
techniques to properly account for unequal variance. Use of these approaches may require
substantial statistical expertise and specialized software.29

Least squares regression is based on the premise that the predictor variable (regressor or
x-variable) is known or determined without error. Examples are phantom measurements where
the values are known or measured with a high degree of precision (i.e. very low variance) and
measurands that are determined prior to the QIB measurement). Therefore, when errors exist for
both the reference and measurement, then the result of simple regression may be a biased
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underestimation of both the slope and residual error.27 Several alternatives to simple linear
regression are available to address this issue and should be considered for their applicability to
the specific QIB. Included in these methods are schemes that allow the imperfect reference to be
considered as a ‘‘target value’’ where the QIB is then measured and the method of least squares may
be used.26,32 This method may have particular appeal when using patient-measured reference data
and may simplify the analysis under those assumptions. A random slopes/random intercept model
may be considered when different measurand values are acquired within the same experimental unit.
Other ‘‘error in variables’’ methods provide unbiased estimates of the regression coefficients;
however, these methods require some knowledge of the variance of both independent and
dependent variables which are not always possible. An overall review of these methods, including
Deming, Passing/Bablok, orthogonal regression and of ordinary least squares methods is provided
by Haekel et al.33

Lack of a standard reference can be a challenge for linearity assessment, as for bias assessment,
but linearity can sometimes still be assessed by direct evaluation of proportionality. The idea is
analogous to use of dilution series in laboratory assays. If reference standards can be constructed to
satisfy proportionality requirements, or if another imaging measurement method is available for
which preservation of proportionality has already been established, then these can be used as the
reference standard against which proportionality of the new imaging measurement method can be
compared. If an appropriate proportionality reference series can be constructed, the proportionality
of the new imaging assessments would be compared directly to the known proportions (perhaps on a
log-transformed scale to allow for assessment of linear relationship). It is important in such
evaluations to include proportions that cover the entire measuring interval. The variance of
replicate measures, and hence the variances of the proportions might also depend on the absolute
levels of the primary measurements. All of these factors must be considered and stated in the
statistical analysis of the proportionality series.

6 Repeatability

Repeatability and reproducibility are commonly confused concepts with one term often substituted,
incorrectly, for the other. In this section, we restate the metrology definitions for repeatability more
completely defined by Kessler7 and the conditions necessary to achieve the quantitative
measurements required to assess QIB repeatability.

In short, repeatability studies encompass test–retest studies that have been applied to phantoms
and patients to assess within-patient variability as a proportion of total variability.

Repeatability is the magnitude of measurement error under a set of repeatable conditions.
Repeatable conditions involve the same measurement procedure, same measuring system, same

operators, same operating conditions, same location, and (most importantly) the same or equivalent
experimental units over a reasonably short interval.

The requirements of the imaging system will define the repeatability conditions and the minimum
time interval between repeats. Shorter time intervals minimize the effects of other variance
components; however, factors such as scanning period, radiation, contrast washout, radioactive
half-life, subject fatigue, etc. place restrictions on the conditions of repeat scans. For example,
sequential repeats within the same scanning session capture effects due to scanner adjustments
and image noise that defines the minimum detectable signal above a base level of noise.
Additionally, if the subject is repositioned within the scanner, additional variability due to even
slight differences in subject positioning will also be captured. Natural biological decorrelation as
time progresses (autoregressive correlation, separate from disease progression) will further add to

Raunig et al. 19

 at DUKE UNIV on June 12, 2014smm.sagepub.comDownloaded from 

http://smm.sagepub.com/


XML Template (2014) [28.5.2014–2:14pm] [1–41]
//blrnas3/cenpro/ApplicationFiles/Journals/SAGE/3B2/SMMJ/Vol00000/140066/APPFile/SG-SMMJ140066.3d (SMM) [PREPRINTER stage]

variation, as may scanner performance drift and disease variability. All of these sources of
variability are relevant to assessing repeatability of a QIB.

6.1 Repeatability model definition

Before we address statistical issues related to repeatability we need to translate the definition we have
been working with so far into suitable notation. Suppose two measurements under repeatability
conditions are indexed as yij, where i denotes the subject (i¼ 1, . . . n) and j indexes the measurements
under the repeatability conditions (j¼ 1, 2 .. k). There are two sources of variability in yij. Within-
subject variability provides an estimate of the variability for all k observations nested within each ith
patient for all n patients and typically under the assumption of equal within-subject variance.
Between-subject variability represents how different one patient is from another in their average
measurement. Repeatability is concerned with within-subject variability since between-subject
variability stems from the natural variability within the population from which the subjects are
sampled and it is not inherent to technical performance of the QIB. A common method to obtain
separate estimates of these two sources of variability is the following one-way random effects model

Yij ¼ �þ ui þ "ij ð7Þ

where � is the overall mean, ui is the random contribution to the intercept from the ith subject and
� Nð0, �2bÞ, and "ij is the error term for each observation and � Nð0, �2wÞ.

6.2 Plots for repeatability analyses

When repeated measurements are made on a known measurand (truth or reference value is known),
the measurements should be plotted against the measurand. Raw values as well as box–whisker plots
provide the reader with information on both the bias to the measurand and the repeated variability
on all of the subjects. Figure 5 is a simulation of the assessment of measurement variability for a
QIB. QIB variability at low true values may be dominated by noise or physical limitations whereas
QIB variability measured at high truth values may be restricted by the physical limitations of the
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Figure 6. Linearity example derived from the QIBA 3A challenge.
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biology, imaging, or both. Therefore, it is important when assessing repeatability performance of a
QIB to estimate measurement error for the entire measurement interval.

Studies to estimate repeatability may not have access to either the gold standard or even a
reference value. In these cases, repeatability estimates measurement error at the expected value of
the QIB over a range of QIB measurements, likely defined by patient status. Plotting the difference
against the mean of two repeated measurements, commonly referred to as a Bland–Altman plots,34

can show any trends in the variability of the QIB measurements over the measuring interval. An
example of a Bland–Altman plot is shown in Figure 7. Here the variance increases with the mean but
there does not appear to be any systematic bias between the two measurements. Bland–Altman plots
help to illustrate the bias–variance relationship (if scatter does not show the same pattern over the
range of average values) and limits of agreement (LOA) (discussed below). For measurements made
against a reference value, the difference from the reference is compared to the reference value (see
Figure 7) to visually assess any dependencies of the measurement to the measurand. Measurements
made when reference values are not known use two or more repeated measurements of the QIB to
compare to the mean measurement (see Figure 8). Test–retest designs typically have no a priori
hierarchy between scans and differences may be performed in any order under the assumption that
measurements are randomly distributed about a mean. Systematic differences between test and retest
scans may exist due to unavoidable biological changes and a predefined order may demonstrate that
problem but the absolute difference would not. Therefore absolute differences should also include a
predefined ordered difference. For data with more than two repeated measures, the SD can be
plotted against the mean to examine the mean–variance relationship.

6.3 Repeatability statistical metrics

The basis for estimates of repeatability is the within-subject variance. It is assumed that all other
factors have been controlled through experimental design. Technical performance assessment of
repeatability of a QIB should include the following metrics:

Within-subject variance

The within-subject variance, �2w, is simply the estimated variance of repeated measurements from a
single experimental unit, measured over replicates. All replicates are assumed to have the same intra-
subject variance for the same measurand. Within-subject variance may include biological or

Figure 7. Bland–Altman-like plot example of agreement when a reference is available.
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physiological variability, which may more appropriately describe the technical performance of the
QIB than a more controlled assessment of only instrument variability. For example, both patient
repositioning and scanner calibrations may contribute to within-subject variance. The assumption in
test–retest studies to assess repeatability is that the variance is homogeneous within the scan periods
and the estimates for �2w can be obtained by pooling the within-scan period variances. This
assumption will hold for most studies and in the case of unavoidable longitudinal drift, pooling
the variances will at least partially adjust for differences in the scan-period means.

Repeatability coefficient (RC) and LOA

Given the model for observed measurements above in equation (7) and the within-patient variance
of �2w, the variance for the difference of two independent measurements of the same measurand is
var("ij – "ij0)¼ 2�2w. The RC may be defined as the least significant difference between two repeated
measurements taken under identical conditions at a two-sided significance of �¼ 0.05

RC ¼ 1:96
ffiffiffiffiffiffiffi
2s2w

q
¼ 2:77sw ð8Þ

where, for normally distributed residuals, Z0.975¼ 1.96, s2w is an estimate of �2w andmay be obtained by
either analysis of variance or likelihood-based methods.36,37 The corresponding 95% CI (� ¼ 0:05) is

2:77
ffiffiffiffiffi
s2w

q
1=

ffiffiffiffiffiffi
df"

p
�21��=2

� �
, 1=

ffiffiffiffiffiffi
df"

p
�2�=2

� �� �
where df" ¼ nðK� 1Þ.

The Analysis of Variance (ANOVA) results table can be used to estimate the within-subject
variance, s2w, from the following identity

s2w �M" ¼ SS"=df"
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Figure 8. Bland–Altman-like plot for analysis of repeatability using QIBA publicly available data35 when reference

values are not available (see Section 10.2.1 for data). All original volumes are in mm3.
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The LOA is defined as the interval where the difference between two measurements under
repeatability conditions for a randomly selected subject (Yi1–Yi2) is expected to be 95% of the
time and is expressed as the interval

LOA ¼ �RC,RC½ � ð9Þ

The original use of LOA stemmed from Bland–Altman analysis of agreement between two different
methods and is not particularly suited for use as a measure of agreement or reliability.38 However,
the LOA can be a convenient means of assessing the ability of the QIB to meet the particular needs
of a study.

The width of the RC does not depend on the sample size of a repeatability experiment, but on the
precision of measurement of �2w and thus RC does depend on the number of subjects and replicates.
It is important to remember that its precision must also be estimated and methods to determine the
confidence limits of the RC are detailed by Barnhart and Barboriak.30

Intraclass correlation coefficient (ICC)

The ICC is a measure of repeated measures consistency relative to the total variability in the
population.39,40 If the entire measurement system is defined as the instrument, the patient and
any factor inherent in the acquisition and measurement of an image region of interest (e.g.
positioning) then ICC is the proportion of total error that is not associated with measurement
error. The ICC is widely used and accepted in many QIB disciplines as an aggregate measure of
repeatability. The working definition of ICC for repeatability is

ICC ¼
�2b

�2b þ �
2
w

ð10Þ

where �2b is the between-subject variance and �2w is the measured within-subject variance. ICC,
though a measure of relative variance, may be overly high (i.e. approaches 1.0) when �2b is much
greater than �2w. ICC values for a very heterogeneous subject sample may yield very nearly perfect
correlation based solely on the between-subject variance and ICC values that are very close to 1.0
should be cautiously interpreted. Therefore, intra- and inter-subject variance should also be
evaluated when interpreting ICC as a measure of repeatability.

Some references are made in the literature to the use of ICC(j,k) terminology where j is the
number of repeated measurements (e.g. scan/rescan for each subject case) and k indicates the
number of observations used in the response (e.g. averaging). The ICC described in equation (10)
represents ICC(2,1) and is the appropriate form of ICC for most repeatability studies. Other forms
of ICC have different interpretations and a full description of the different types of ICC for different
values of j and k is found in Barnhart and Barboriak.30

Coefficient of variation (wCV). The within-subject coefficient of variation (wCV) is often reported for
repeatability studies to assess repeatability in test–retest designs. When the QIB is normally
distributed with constant variance over the linearly measureable range, the value for wCV will be
a function of the mean and a single estimate of RC has limited usefulness in describing the LOA and
may incorrectly demonstrate a difference in repeatability due entirely to different mean QIB
measurements.

Very often, however, the QIB values can be adequately characterized as lognormally distributed
where the SD of the QIB measurements varies proportionally with the mean and wCV is constant.
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There is a direct functional relationship of the variance of the lognormal data to wCV. The wCV is
defined as in equation (11) and the relationship to the variance of the logtransformed QIB values
shown in equation (12)41

wCV ¼
�w
�

ð11Þ

wCV ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ew�

2
lt � 1

p
ð12Þ

where w�2lt is the within-subject variance of the logtransformed QIB. A first-order approximation of
equation (12) yields a convenient approximation for wCV

wCV � w�lt ð13Þ

that hold for small values of �lt, typically much less than 1.0. Confidence intervals of wCV when QIB
data are lognormally distributed can be determined on the logtransformed data as described earlier
and then back transformed to the QIB original scale. While wCV is not recommended as a
repeatability metric for normally distributed data, it may be appropriately used if the measurable
and linear range is small and the mean QIB adequately represents the entire population described in
the context of use. When not using logtransformed data to estimate wCV, confidence intervals may
be approximated using methods proposed by Vangel42 or the bootstrap which is easily implemented
on repeatability studies.

6.4 Repeatability study design and analysis

6.4.1 Longitudinal changes

Repeatability studies designed for image measurement repeatability performance are influenced by
many biological and technical factors and an assessment of repeatability should consider how those
factors will fit into the QIB profile. For example, if repeated measurements on a patient are limited
by contrast administration constraints, then there may be biological changes (e.g. tumor growth,
decrease in function) and the within-patient variance for the QIB would also include the difference
between the means. Therefore, any model or calculation that is used to estimate the within-patient
variance should also consider including into the design an adjustment for any possible longitudinal
change in the means over the scan periods.

6.4.2 Subject limitations

Repeatability study design is primarily conducted with each test performed at a single clinical site with
a specific scanner to be investigated according to the procedure as described in the respective QIBA
Profile. The measurements may be conducted on phantoms, animals, or human subjects, often
patients. Phantom scans can be repeated several times in a sequence or with defined time period in
between. Patient scan repetition has limitations due to radiation exposure for Computed Tomography
(CT) or Positron Emission Tomography (PET) procedures, use of contrast media or tracers that have
their own kinetic behavior (washout period needs to be considered before a rescan is possible), and
patient consent. Therefore, typically these repeatability tests are limited to two performed as test–
retest (e.g. Dynamic Contrast EnhancedMRI (DCE-MRI) at least 48 h apart) or sometimes known as
‘‘coffee-break’’ experiments with only a short break (e.g. on the order of 15min) between scans. In
practice, repeatability studies can be embedded within a larger study design that also includes multiple
scanner/site reproducibility testing, discussed more fully in Section 7.
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6.4.3 Sample size considerations

Repeatability studies are often designed to estimate repeated measures within-subject variance and
no hypothesis tests are typically planned. Estimation studies would be more interested in the
precision of the variance estimates and not in sizing for an effect size. Therefore, the precision of
the within-subject variance estimate is the primary interest and is a function of both k and n. Most
QIB values will be either normally or lognormally distributed and normality is a reasonable
assumption. Assuming normality and sufficient degrees of freedom, the standard error of the
repeatability variance (SEVw) for normally distributed QIB values is a function of the population
variance

SEVw ¼ SE S2
w

� �
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�4w

nðk� 1Þ

s
: ð14Þ

Equation (14) may be expressed as a ratio of the sampled to the population variance (rSEVw) to
illustrate the relationship to the study design parameters k and n as shown in Figure 9. Though the
assumptions do not rigidly hold for very small sample sizes, the results nonetheless illustrate the
instability of the variance estimate under these conditions.

Most repeatability studies are configured as test–retest (i.e. k¼ 2) but different configurations
may be more practical and an equivalent rSEVw may be found with more repeated measurements

Figure 9. Relationship of sample size to rSEVw for k¼ 2,3,4. rSEVw values as a function of the total number of N

measurements are also shown for N¼ 32, 48, 60, 120.
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and less subjects. Often the study design is constrained by budget or logistical considerations and the
total number of evaluations may be limited to a fixed value, N¼ nk. The sensitivities of rSEVw to
changes in n and k are shown by taking the partial derivatives and are as follows

d SEVwð Þ

dn
/

�1

N� nð Þn

and

d SEVwð Þ

dk
/

�1

N� nð Þ k� 1ð Þ

When n is large enough to adequately represent the population and k	 n, increasing k has a larger
effect on decreasing rSEVw than the proportional change in n. Two examples of designs that
consider possible study constraints are presented in Table 2.

6.4.4 Analysis model considerations

Analysis methods to estimate the variances and means as described include repeated measures
(ANOVA) and maximum likelihood estimation (MLE) methods. The appropriate model should
be selected based on the study design assumptions understanding that MLE methods are generally
superior for small sample sizes due to the asymptotic assumption of method of moments (MOM)
methods. Study design should be as parsimonious as possible to reduce problems with the
interpretation of the results in the presence of confounding factors or significant strata. Due to
the difficulty in obtaining a homogeneous set of recruited patients in some QIB measurement studies,
the use of subject data without a truth standard should be assessed for subject or patient
homogeneity prior to analysis for consistency with the Profile.

7 Reproducibility

Reproducibility demonstrates the ability of a QIB to obtain the same measurement when made
on the same experimental unit under different experimental conditions. It is similar to
repeatability in the sense that repeated measurements are made on the same subject; however,
the measurement of reproducibility includes the sum of both the within-subject and the between-
condition variances

�2reproducibility ¼ �
2
repeatability þ �

2
between�factors ð15Þ

Table 2. Examples of repeatability study design sample size considerations.

Example 1. Number of QIB measurements limited to n¼ 60 k¼ 2, n¼ 30 rel. SEVw¼ 0.26

k¼ 3, n¼ 20 rel. SEVw¼ 0.22

k¼ 4, n¼ 15 rel. SEVw¼ 0.21

Example 2. Desired relative SEVw is 25% k¼ 2, n¼ 31

k¼ 3, n¼ 16

k¼ 4, n¼ 11
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While repeated scans on the same subject provide information on the inherent ability of the QIB to
repeat the same measurement under identical or near identical conditions, repeated use of the QIB
technology under different conditions stated within the QIBA Profile assesses the ability of that QIB
to provide reliable data for an analysis that may include data collected under a diverse set of random
or fixed conditions. Some examples of reproducibility conditions include different scanners, sites,
countries or regions, and measuring systems but could also include other factors more specific to an
indication. An example of a reproducibility study would compare organ volumes using one scanner
type (CT) to the same organ volumes obtained on the same subject using a different scanner type
(MRI) done under experimentally equivalent conditions. Another example may assess the
performance of a biomarker to be reliably acquired in different geographical regions (e.g. United
States/European Union/Asia) in order to determine the applicability of the biomarker within a large
clinical trial. While reproducibility studies ideally evaluate different QIB conditions repeated on the
same experimental unit, this design is not always possible and those study designs are addressed
within this section.

The metrology definitions for reproducibility and the necessary conditions to measure
reproducibility are defined in detail in Kessler.7

7.1 Reproducibility model definition

Reproducibility studies are designed with the goal of evaluating different factors that may affect the
QIB measurement. Consider a study to evaluate reproducibility between sites randomly chosen from
a large set of available sites. For n cases, J
 2 repeated measurements are taken per site for S
 2
sites. In this study design, the condition being varied is site, and when the experimental unit is
available at different sites such as when phantoms are the experimental units, sites are crossed with
cases. For jth repeated measurement yisj on site s for case i, i¼ 1, 2, . . . n, s¼ 1, 2, . . .S, and
j¼ 1, 2, . . . J, consider the model

yisj ¼ �þ �i þ �s þ ��ð Þisþ"isj ð16Þ

with random effects �i � Nð0, �2�Þ for cases, �s � N 0, �2�
� �

for site, ��ð Þis� Nð0, �2��Þ for case by site
interactions, and "isk � N 0, �2"

� �
for replicates within site and case. This model will be used for the

remainder of the discussion on reproducibility. More complex designs will be relatively similar for
metrics and design

7.2 Reproducibility metrics

As with an assessment of repeatability acquired by a test–retest study design, repeated measurements
of a subject under different measurement conditions may also be described by similar metrics. The
RC is defined for repeatability and describes an interval where the range of differences of two
identical measurements obtained on the same experimental unit may be expected to occur 95% of
the time. Very often the term ‘‘repeatability coefficient’’ is used to describe reproducibility and, to
avoid confusion or inappropriate interpretation of RC, a similar term is defined for measurements
acquired on the same experimental unit under two different conditions as the Reproducibility
Coefficient (RDC)43,44 and is defined in metrology guidelines as the absolute difference between
two measurement conditions that should be exceeded by the measured differences only 5% of the
time. Also described in this section is the concordance correlation coefficient (CCC) which is
specifically tailored to an assessment of reproducibility with unpaired data.
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It should be noted that the terms ‘‘reproducibility’’ and ‘‘reproducibility coefficient’’ are used
interchangeably with ‘‘repeatability’’ and ‘‘repeatability coefficient’’ in the literature outside of
metrology to define repeatability or to describe the predictive ability of a hierarchically supported
item within a scale.45 The definitions for reproducibility, including the RDC, apply to
reproducibility as defined in Kessler.7

The reproducibility coefficient

Similar to RC, the reproducibility coefficient (RDC) may be defined as the least significant difference
between two repeated measurements taken under different conditions. Using the model above as an
example, the repeated measurements are taken at different sites but also could be designed to
measure reproducibility across different instruments (e.g. scanners), readers/reviewers, algorithms,
or any factor of interest to a clinical trial. This definition of RDC proposed here is consistent with
metrology standards set out in ISO 5725:199443,44,46 and described as the ‘‘reproducibility index’’ by
Kimothi and Kimothi47 that extends the notion of reproducibility SD, the SD of measurement
results obtained under most reproducibility conditions.22,44,48–50

RDC is defined here under the assumption of normality as 1.96 times the SD of a difference
between two measurements yisj and yis0j0 taken on the same case i but at different site s and s0. The SD
is equal to square root of two times the sum of all the variance components except for �2� , the
random case effects variance. Thus

RDC ¼ 2:77
ffiffiffiffi
V
p

, V ¼ �2� þ �
2
�� þ �

2
"

An unbiased moments-based estimate of RDCmay be calculated from the sums of squares output
of the ANOVA model as

RD ~C ¼ 2:77
ffiffiffiffi
~V

p
, ~V ¼ k�M� þ k��M�� þ k"M" ð17Þ

where coefficients k� ¼ 1=nS, k�� ¼ n� 1ð Þ=nJ, and k" ¼ J� 1ð Þ=J, mean squares M� ¼ SS�=df�, and
M�� ¼ SS��=df��, and M" ¼ SS"=df", sums of squares SS� ¼ nJ

PS
s¼1 ð �ys�� � �y���Þ

2, SS�� ¼
J
Pn

i¼1

PS
s¼1 ð �yis� � �yi�� � �y�s� þ �y���Þ

2, and SS" ¼
Pn

i¼1

PS
s¼1

PJ
j¼1 ð yisj � �yis�Þ

2, and degrees of
freedom df� ¼ S� 1, df�� ¼ ðn� 1ÞðS� 1Þ, and df" ¼ nSðJ� 1Þ.

An example of the above model can be found in Section 10.3.1. Assuming the measurements are
normally distributed, a large sample 95% CI on RDC may be obtained by the method of Graybill
and Wang51 because RDC is a linear combination of mean squares with nonnegative coefficients.
The 95% CI is

2:77 ~V�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð p�k�M�Þ

2
þ ð p��k��M��Þ

2
þ ð p"k"M"Þ

2
q�

,

~Vþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðq�k�M�Þ

2
þ ðq��k��M��Þ

2
þ ðq"k"M"Þ

2
q �1=2

where pa ¼ 1� 1=F1��=2ðdfa,1Þ, qa ¼ 1=F�=2ðdfa,1Þ � 1, and F	ð fn, fd Þ is the 100 	 th percentile of
the F distribution with numerator and denominator degrees of freedom fn and fd. Note
F	ðdfa,1Þ ¼ �

2
	ðdfaÞ=dfa.

Alternative estimators and confidence intervals on RDC could be constructed based on maximum
likelihood, Satterthwaite approximation, an exact method, etc. For various estimators and
confidence intervals of functions of variance components, see Searle et al.,52 Milliken and
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Johnson,53 and Burdick and Graybill.54 Conceivably, the bootstrap could be used to obtain a
nonparametric CI on RDC. However, formulation of the bootstrap samples is unclear because of
the multiple sources of variation involved.

Concordance Correlation Coefficient (CCC)

The CCC was proposed by Lawrence and Lin55 as a more complete evaluation of agreement
between multiple observations per case made without ANOVA assumptions. It describes the
extent to which paired measurements diverge from perfect agreement, reflecting both systematic
differences between repeated measurements and variability. In the case where two factors are being
compared agreement, the CCC provides a metric of reproducibility that may be easily calculated for
two classes, such as scanner type, chosen as fixed effects. The CCC is defined as

CCC ¼
�1�2
12

�21 þ �
2
2 þ �1 � �2ð Þ

2
ð18Þ

where �21 and �22 are the variances for each class, and �1 and �2 are the group means. Confidence
intervals should be included in any reporting of CCC and methods are found in Chen and
Barnhart.40

7.3 Plots for reproducibility analyses

Plots representing the measurements at each of the factors to be evaluated for reproducibility are an
important tool to visually inspect the data summarized by the metrics. The following plots are
recommended for any analysis of reproducibility

. Paired data
� Scatter Plots: Method 1 versus Method 2 with corresponding fitted regression or robust

nonparametric fitted lines (if applicable) when the data are paired with the same
experimental unit.

� Bland–Altman plots34 are a widely used and valuable visualization tool in the analysis of QIB
reproducibility and are especially valuable when a standard reference is not available.

. Box and whisker plots with reproducibility conditions as x-categories when data are not paired
with outlier identification.
� Individual points identified and jittered.
� Outlier detection using interquartile range (IQR) criteria of 1.5 � IQR.
� Connecting median values between groups may unduly influence an analysis trends and is not

generally recommended for these analyses.
. Distribution analyses
� Histograms with normal or lognormal distribution fit (typical). Other distributions may also

be shown (not typical).
� Q–Q plots of model residuals.
� Leverage plots for detection and analysis of high leverage points.

Data chosen at random from QIBA 3A project31 for two different measurement groups for
reproducibility were used in Figures 10 and 11 as an example of an analysis of CT volumetry
measurements using two measurement methodologies. Several different phantoms of different
sizes and configurations as well as different measurement methods were used. All phantoms were
imaged at the same slice thickness. In Figure 10a and 10b, Group 01 and Group 02 were plotted
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against each other along with a fitted least squares regression line. An orthogonal regression also
was run, though the fitted line is nearly identical and not distinguishable from the least squares line
displayed. All analyses were conducted using JMP� 10.0.1 software (SAS Institute Inc. Cary, NC).
There is essentially no bias (intercept is equivalent to a volume bias of approximately 1mm3) but a
slight tendency for Group 02 to measure volumes smaller than Group 01. There is also an apparent
inverse relationship of the variability relative to the mean. Alternately, Figure 11 displays box–
whisker plots for 11 different methods for estimating volumes taken for a single phantom set at one
slice thickness from the QIBA 3A challenge data.31 This plot shows the point-wise and distribution
statistics of each method about the overall mean, essentially equivalent to a Bland–Altman plot for

Figure 10. Phantom CT volumetry comparison of two methods plotted for logtransformed data (original units

mm3). (a) slope¼ 0.974, intercept¼ 0.086 and (b) shows the Bland–Altman plot with lower and upper agreement

limits. Correlation¼ 0.99; RDC¼ 0.234.
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Figure 11. Box–whisker plot for multigroup reproducibility. Points are jittered for viewing. Whiskers indicate

1.5 � IQR outlier boundary.
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multiple groups. These plots are common and found in most statistical plotting tools. Other types of
plots that display means and distributions in a different may not be commonly available or familiar.

7.4 Reproducibility study design and analysis

Study design

Designs for reproducibility studies fall under two main categories

(1) Repeated measurement design: reproducibility conditions are used to acquire repeated
measurements on each experimental unit. These designs result in the total variance as shown
in equation (15). Furthermore, measurements repeated for each condition allow for further
estimation of each of the variance components. The inference is on the experimental unit.

(2) Cohort measurement design: measurements for different reproducibility components are
acquired from different subjects. This is especially true when evaluating reproducibility
between sites. The inference is on the cohort.

Examples of different reproducibility components are presented in Table 3 and are only limited by
the ability to compare one component to another.

Analysis—Hypothesis versus Descriptive

The analysis of reproducibility data may be simply descriptive; however, a typical reason to conduct
a reproducibility study would be to determine the ability to reliably conduct a study under different
conditions or with different QIB methodologies with results statistically identical to a study
conducted with no variation in conditions. There may also be an interest in contrasting one
methodology to another for superiority. Therefore, analyses of reproducibility will typically
involve hypothesis tests for equivalence, superiority, or noninferiority. Descriptions of these
hypotheses for algorithm reproducibility are found in the companion paper in this series by
Obuchowski8 which can easily be modified for other reproducibility conditions.

Analysis of relative nonsystematic bias

The mixed effects model described by equation (14) may be used to test fixed effects, including
interaction effects to test for a systematic bias between methods. Similarly, nonsystematic bias

Table 3. Examples of reproducibility study design component examples.

Model component

Type (typically)

Fixed or random Example

Methodology Fixed (typically) Slice thickness

Scanner type Fixed MRI/CT/Ultrasound

Scanner manufacturer Fixed Siemens/Phillips/GE

Site Fixed or random Sites within US

Region Fixed EU/US/Asia

Population Fixed Consortia databases (ADNI versus Descripa)

Operator Random MRI tech

Radiological reviewer Random (preferable) – Oncology radiologist measurement of longest diameter

Fixed (rare) – Experienced versus inexperienced
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between methods may be tested using the following model

y1i ¼ �þ 1þ 	ð Þ y2i � a2ið Þ þ "1i ð19Þ

where y1i is condition 1 and y2i is condition 2; a2i is the error term for the random variable y2i and "1i
is the error term for variable y1i. The analysis tests for evidence of nonsystematic bias as

H0ðno non� systematic biasÞ : 	 ¼ 0

HAðnon� systematic biasÞ : 	 6¼ 0

Since the variance of both error terms are likely to be near equal, a least squares linear regression
analysis is not appropriate and an alternative error in variables method must be used to estimate 	.
Some useful methods to determine unbiased estimates of 	 are discussed by Graybill56 and Draper
and Smith.57

Analysis of RDCs

There may be an interest in comparing reproducibility to repeatability since equivalence of the two
reliability metrics would be evidence of equivalence in the absence of any nonsystematic bias. If the
repeated measurements acquired for all reproducibility conditions (e.g. test–retest for both
reproducibility conditions) and the measurements can be assumed to have been acquired without
any change in the condition of the subject, then an estimate of RC is appropriate. Recall that the
repeatability SD is �". The RC is RC ¼ 2:77�". An estimate of RC is R ~C ¼ 2:77

ffiffiffiffiffiffiffi
M"

p
. The

corresponding 95% CI is

2:77
ffiffiffiffiffiffiffiffiffiffiffiffiffi
df"M"

p
1=�21��=2ðdf"Þ, 1=�

2
�=2ðdf"Þ

� �
ð20Þ

with � ¼ 0:05.
One may wish to test if reproducibility variation exceeds repeatability variation. The null and

alternative hypotheses are

H0 : �2� ¼ �
2
�� ¼ 0

HA : �2� 4 0 or �2��4 0

Equivalently, one may test

H00 : n�2� þ nJ�2�� ¼ 0

H0A : nJ�2� þ J�2��4 0

Under H00, the test statistic F� ¼M�=M" � Fðdf�, df"Þ. Thus at level �, H0 is rejected when
F�4F1��ðdf�, df"Þ.

The reproducibility study described earlier is relatively simple, with the levels of only one
condition (site) being varied and crossed with cases. More complex reproducibility studies can be
considered, in which variation in the levels of multiple conditions is studied simultaneously, with the
conditions either nested or crossed with each other. It is important that the statistical analysis of the
variance components reflects the study design.

A reproducibility study could also be designed to compare the RDCs of two or more algorithms.
For the same design as described earlier but with repeated measurements on each of m¼ 1, 2, . . .M
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algorithms instead of just one, the model shown in equation (16) would be modified to include fixed
effects for the algorithms, and random effects that depend on j for case, site, and site by case. In this
mixed effects model, the RDCs for the algorithms could be estimated by extending the method of
moments described to obtain estimators based on linear combinations of mean squares. Note, for a
difference in RDC between two algorithms, some of the mean squares in the linear combination
estimator will have negative coefficients, invalidating the method of Graybill and Wang for
constructing a 95% CI.51 Reproducibility of different algorithms may also be compared by the
CCC.58

For studies in which it is desired to vary many conditions simultaneously, to compare many
algorithms, or both, the number of repeated measurements necessary per case could be prohibitive.
The number could be reduced by considering an incomplete block design, with each case being
considered a block. In principle, designs of such studies could be constructed such that lower order
variance components are estimable or least confounded with higher order variance components that
are expected to be relatively small.

Anecdotally, reproducibility of structural measurements is reader- and algorithm-dependent and
is amenable to analysis using these summary measures,59 but the greater source of error for
functional measurements such as the standardized uptake value (SUV) from fluorodeoxyglucose
(FDG) PET imaging is outliers due to mistaken transfer of information such as patient weight and
injection dose.60 Specification of the random effects model is critical to the design, analysis, and
interpretation of these studies. Additionally, note that published results of studies involving rater
agreement should adhere to Guidelines for Reporting Reliability and Agreement Studies.61

RDC depends on the conditions being varied in any given study of measurement reproducibility.
Ideally, the largest sources of variation for the QIB are known, and the reproducibility study
includes all of these sources. The calculated RDC would then represent the total variation that
could be expected in practice. If instead the reproducibility study includes only a subset of the
important sources of variation, then the RDC is intermediate between the total RDC and the RC
and may not even apply to a particular clinical setting. To illustrate, for FDG-PET, the largest
sources of variation might be interscan, interobserver, intraobserver, and interday.62 A
reproducibility study could then be designed to include all of these sources of variation.

Reproducibility answers the question regarding reliability of measures across different clinical
sites, different scanner models and manufacturers, different operators, technicians, radiologists, or
standard procedures and any variable within a clinical trial that may affect the reliability of the study
results. Ideally, all engaged sites in a reproducibility study should use equivalent phantom types and
follow the QIBA Profile for the respective QIB in their respective clinical environment. The number
of reproducible factors that are evaluated is determined by the QIBA Profile and the needs of the
end-user. However, in a large clinical trial where the number of sites may be large, sites should be
selected in a random or near-random manner and reflect the impact of a site on the number of
subjects or patients to be included.

8 Summary

A general model for the overall technical performance of a QIB may use equation (16) with measures
repeated as test–retest for each reproducibility factor as an estimate of measurement error. Linearity
and bias assessment are included into the model by determining the measurand range to capture the
full measurement interval which can use previous technical descriptions of QIB performances.
Table 4 provides a general summarized description as a starting point for designing a QIB
technical performance study.
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9 Discussion and future directions

This paper gives a basic introduction in designing and conducting a technical performance analysis
study for a QIB and some of the key issues to consider. Clearly, we just touch the surface of what is
involved in conducting this type of study. Practical concerns related to balancing QIB performance
with available resources have to be addressed in any QIB study and often prove to be quite
challenging. Likewise, many of the issues discussed earlier are not fully characterized and may
require additional research efforts. This includes topics such as how to address linearity of the QIB
if no standard reference is available or if only a partial standard reference exists. An example of this is
not having a gold reference standard for FDGSUV in clinical cases. In this example, a complementary
modality may be able to provide a partial standard but not a true gold standard. For some QIBs,
evaluating linearity and dynamic range across lesion properties and imaging conditions may be
achievable through phantom studies. For other QIBs, phantoms may not be available and an
alternate approach for dealing with linearity would need to be developed. The lack of a standard
reference would likely also impact possible claims and study designs for assessing the QIB. Another
area that needs to be tailored to the application area and specific claim is the reproducibility
evaluation. For QIBs, the patient prep, image acquisition, and image processing parameter space
and other factors can quickly grow to an unmanageable size. Clearly, work is needed to develop
systematic approaches for quickly identifying important parameters across which reproducibility
testing must be conducted. This would likely involve the collection of preliminary data where the
use of computation imaging models or phantom data may be able to play an important role.

Again, the focus of this paper is on technical performance analysis to address the question of how
well a measurement can be made. The technical assessment is necessary but not sufficient for
validating a QIB. The next step in the process is then to validate the clinical utility of making the
measurements. A different class of studies is likely required to show that a QIB has utility in either
clinical practice or clinical trials. For example, it would likely involve randomized clinical trials where
the QIB is expected to be a surrogate endpoint for patient response. However, QIBs used for defining
treatment populations or for safety may require different and perhaps less resource-intensive
evaluations to prove effectiveness. Currently, systematic and efficient approaches for validating
clinical utility of imaging biomarkers have not been fully developed. Consensus on how to design
and conduct these clinical assessment studies is the next step in the process of developing a systematic
framework for assessingQIBs and promulgating them into wider clinical practice and clinical trial use.
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Appendix 1

10.1. Linearity example

The following data were derived from the QIBA 3A challenge35 results to represent linearity of
replicate measurements of a known reference value or measurand

Subject

Measurand

(mm3)

Replicate

number

Measured

volumes (mm3) Subject

Measurand

(mm3)

Replicate

number

Measured

volumes (mm3)

1 43,568 1 41,762 17 1768 1 2867

1 43,568 2 45,493 17 1768 2 324

1 43,568 3 41,687 17 1768 3 286

1 43,568 4 44,925 17 1768 4 3034

1 43,568 5 43,156 17 1768 5 2166

2 624 1 590 18 7176 1 7914

2 624 2 724 18 7176 2 6956

2 624 3 611 18 7176 3 6817

2 624 4 433 18 7176 4 6797

2 624 5 739 18 7176 5 8625

3 1900 1 1341 19 1137 1 1655

3 1900 2 3147 19 1137 2 1488

3 1900 3 770 19 1137 3 324

3 1900 4 3003 19 1137 4 935

3 1900 5 3014 19 1137 5 1546

4 21,169 1 18,810 20 68,505 1 34,410

4 21,169 2 20,423 20 68,505 2 82,976

4 21,169 3 20,608 20 68,505 3 61,929

4 21,169 4 19,918 20 68,505 4 83,204

4 21,169 5 20,664 20 68,505 5 81,726

5 17,492 1 16,690 21 2092 1 2834

5 17,492 2 18,213 21 2092 2 1571

5 17,492 3 11,735 21 2092 3 1678

5 17,492 4 16,764 21 2092 4 3912

5 17,492 5 21,765 21 2092 5 1339

6 87,563 1 91,529 22 9039 1 2340

6 87,563 2 80,985 22 9039 2 18,890

6 87,563 3 86,002 22 9039 3 1226

(continued)

Raunig et al. 37

 at DUKE UNIV on June 12, 2014smm.sagepub.comDownloaded from 

http://smm.sagepub.com/


XML Template (2014) [28.5.2014–2:15pm] [1–41]
//blrnas3/cenpro/ApplicationFiles/Journals/SAGE/3B2/SMMJ/Vol00000/140066/APPFile/SG-SMMJ140066.3d (SMM) [PREPRINTER stage]

Continued

Subject

Measurand

(mm3)

Replicate

number

Measured

volumes (mm3) Subject

Measurand

(mm3)

Replicate

number

Measured

volumes (mm3)

6 87,563 4 89,348 22 9039 4 10,982

6 87,563 5 90,034 22 9039 5 13,196

7 6315 1 6252 23 717 1 771

7 6315 2 6488 23 717 2 589

7 6315 3 6151 23 717 3 613

7 6315 4 6470 23 717 4 776

7 6315 5 6325 23 717 5 1008

8 29,821 1 32,159 24 3816 1 4114

8 29,821 2 29,541 24 3816 2 3995

8 29,821 3 26,684 24 3816 3 4003

8 29,821 4 34,306 24 3816 4 3472

8 29,821 5 27,027 24 3816 5 4331

9 3277 1 2827 25 10,986 1 11,309

9 3277 2 5551 25 10,986 2 13,070

9 3277 3 1043 25 10,986 3 8089

9 3277 4 446 25 10,986 4 9456

9 3277 5 6504 25 10,986 5 10,269

10 579 1 881 26 148,060 1 132,118

10 579 2 359 26 148,060 2 167,965

10 579 3 411 26 148,060 3 124,519

10 579 4 548 26 148,060 4 164,118

10 579 5 671 26 148060 5 139948

11 22,463 1 22,531 27 4197 1 4438

11 22,463 2 22,386 27 4197 2 3425

11 22,463 3 22,438 27 4197 3 3873

11 22,463 4 22,567 27 4197 4 4033

11 22,463 5 22,221 27 4197 5 4747

12 1615 1 1402 28 563 1 581

12 1615 2 1472 28 563 2 541

12 1615 3 1452 28 563 3 503

12 1615 4 1711 28 563 4 674

12 1615 5 1727 28 563 5 736

13 20,706 1 18,568 29 5992 1 6170

13 20,706 2 21,029 29 5992 2 6295

13 20,706 3 21,883 29 5992 3 5636

13 20,706 4 20,774 29 5992 4 5422

13 20,706 5 21,479 29 5992 5 5492

14 5274 1 1172 30 35818 1 31772

14 5274 2 11522 30 35818 2 41970

14 5274 3 6294 30 35818 3 38900

14 5274 4 6478 30 35818 4 35898

14 5274 5 3916 30 35818 5 36461

15 24,667 1 16,011 31 806 1 763

15 24,667 2 24,526 31 806 2 860

15 24,667 3 24,602 31 806 3 913

(continued)
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10.2. Repeatability example

10.2.1. Data

The following data were chosen as a subset of the QIBA 3A challenge35 for repeated measures of
phantom volumes over a range of volumes and phantom shapes. All measurements are natural log
transformation of volumes with the original units as mm3.

Subjid Sample Test Retest Subjid Sample Test Retest

1 1 10.71 10.64 17 1 8.03 7.96

1 2 10.75 10.73 17 2 6.48 5.78

1 3 10.46 10.64 17 3 5.39 5.66

1 4 10.78 10.71 17 4 7.97 8.02

1 5 10.71 10.67 17 5 7.69 7.68

2 1 6.04 6.38 18 1 8.70 8.98

2 2 6.42 6.58 18 2 8.71 8.85

2 3 6.43 6.42 18 3 8.79 8.83

2 4 6.56 6.07 18 4 8.97 8.82

2 5 6.66 6.61 18 5 9.00 9.06

3 1 6.92 7.20 19 1 7.14 7.41

3 2 7.90 8.05 19 2 7.34 7.31

3 3 6.50 6.65 19 3 6.27 5.78

3 4 6.80 8.01 19 4 7.00 6.84

3 5 7.81 8.01 19 5 6.91 7.34

4 1 9.98 9.84 20 1 10.35 10.45

4 2 10.03 9.92 20 2 11.26 11.33

4 3 10.03 9.93 20 3 11.17 11.03

4 4 10.00 9.90 20 4 11.26 11.33

4 5 10.01 9.94 20 5 11.33 11.31

5 1 9.78 9.72 21 1 7.85 7.95

5 2 9.76 9.81 21 2 7.90 7.36

5 3 9.69 9.37 21 3 7.31 7.43

5 4 9.48 9.73 21 4 7.33 8.27

5 5 10.15 9.99 21 5 7.18 7.20

6 1 11.38 11.42 22 1 7.55 7.76

(continued)

Continued

Subject

Measurand

(mm3)

Replicate

number

Measured

volumes (mm3) Subject

Measurand

(mm3)

Replicate

number

Measured

volumes (mm3)

15 24,667 4 23,365 31 806 4 667

15 24,667 5 24,867 31 806 5 712

16 6024 1 6226

16 6024 2 5568

16 6024 3 5549

16 6024 4 6630

16 6024 5 6344
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Continued

Subjid Sample Test Retest Subjid Sample Test Retest

6 2 11.35 11.30 22 2 9.70 9.85

6 3 11.35 11.36 22 3 7.47 7.11

6 4 11.41 11.40 22 4 7.79 9.30

6 5 11.40 11.41 22 5 9.97 9.49

7 1 8.78 8.74 23 1 6.55 6.65

7 2 8.73 8.78 23 2 6.57 6.38

7 3 8.77 8.72 23 3 6.55 6.42

7 4 8.73 8.77 23 4 6.45 6.65

7 5 8.73 8.75 23 5 6.52 6.92

8 1 10.00 10.38 24 1 8.26 8.32

8 2 10.42 10.29 24 2 8.21 8.29

8 3 10.37 10.19 24 3 8.23 8.29

8 4 10.28 10.44 24 4 7.97 8.15

8 5 10.37 10.20 24 5 8.31 8.37

9 1 6.80 7.95 25 1 9.44 9.33

9 2 8.68 8.62 25 2 9.44 9.48

9 3 7.39 6.95 25 3 9.13 9.00

9 4 6.31 6.10 25 4 9.38 9.15

9 5 8.92 8.78 25 5 9.35 9.24

10 1 6.69 6.78 26 1 11.77 11.79

10 2 6.06 5.88 26 2 11.87 12.03

10 3 5.96 6.02 26 3 11.85 11.73

10 4 6.09 6.31 26 4 11.93 12.01

10 5 6.76 6.51 26 5 12.14 11.85

11 1 10.01 10.02 27 1 8.51 8.40

11 2 10.02 10.02 27 2 8.19 8.14

11 3 10.03 10.02 27 3 8.23 8.26

11 4 10.03 10.02 27 4 8.38 8.30

11 5 10.02 10.01 27 5 8.47 8.47

12 1 7.30 7.25 28 1 6.11 6.36

12 2 7.30 7.29 28 2 6.23 6.29

12 3 7.52 7.28 28 3 6.44 6.22

12 4 7.49 7.44 28 4 6.47 6.51

12 5 7.49 7.45 28 5 5.90 6.60

13 1 9.83 9.83 29 1 8.59 8.73

13 2 10.01 9.95 29 2 8.88 8.75

13 3 9.99 9.99 29 3 8.62 8.64

13 4 9.89 9.94 29 4 8.77 8.60

13 5 9.94 9.97 29 5 8.76 8.61

14 1 7.23 7.07 30 1 10.50 10.37

14 2 9.11 9.35 30 2 10.45 10.64

14 3 8.09 8.75 30 3 10.49 10.57

14 4 8.75 8.78 30 4 10.41 10.49

14 5 8.11 8.27 30 5 10.42 10.50

15 1 9.57 9.68 31 1 6.65 6.64

15 2 10.46 10.11 31 2 6.80 6.76

(continued)
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10.3. Reproducibility example 1

10.3.1. Data 1

Group 01

Volumes

Group 02

Volumes

Group 01

Volumes

Group 02

Volumes

Group 01

Volumes

Group 02

Volumes

Group 01

Volumes

Group 02

Volumes

518.799 553.894 585.938 695.801 587.463 463.104 4191.82 4273.94

507.685 492.705 83.9233 169.373 33335.9 34961.7 72.4916 125.496

582.886 592.804 79.3457 94.6045 62.561 51.8799 70.0508 84.2336

606.538 550.082 3982.54 3882.6 241.089 283.813 284.353 278.581

561.523 542.45 679.016 413.513 4142.76 3637.7 4525.76 4209.9

524.902 582.886 588.989 501.251 32841.5 34493.3 262.451 296.021

4551.7 4465.48 4205.32 4511.26 290.943 291.033 3930.66 4074.46

4107.67 4506.68 4182.43 4118.35 325.114 301.288

4412.84 4357.15 480.652 458.527 555.769 544.955

4512.54 4295.18 4208.37 4059.6 80.3022 79.1063

Continued

Subjid Sample Test Retest Subjid Sample Test Retest

15 3 10.33 10.11 31 3 6.73 6.82

15 4 10.28 10.06 31 4 6.38 6.50

15 5 10.09 10.12 31 5 6.97 6.57

16 1 8.69 8.74

16 2 8.74 8.62

16 3 8.69 8.62

16 4 8.65 8.80

16 5 8.72 8.76
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