PROCESS IMPROVEMENT: HOW CAN WE REDUCE RADIATION EXPOSURE TO THE FEMALE BREAST DURING ROUTINE CT EXAMINATIONS OF THE ABDOMEN AND PELVIS?

Cherisse Wada MD, Charles Hua MD MS, Nolan Kagetsu MD FACR

Mount Sinai West
New York, NY

PURPOSE

• To determine the number of examinations that included breast tissue on routine CT abdomen and pelvis examinations for quality improvement purposes.

• The scan range of a standard CT exam of the abdomen and pelvis extends from the dome of the diaphragm to below the ischial tuberosities.
 • However, this varies by technologist and the lower chest may be included in the examination.
 • This poses a problem, as glandular breast tissue is particularly sensitive to the effects of ionizing radiation.

• As proponents of ALARA, we must ensure the CT tomogram is used to reduce scanning coverage, thereby resulting in CT dose reduction, especially to the radiosensitive breast.
PDSA CYCLE

PLAN
- Determine the number of exams that include the breast tissue on routine CT abdomen and pelvis
- Devise inclusion and exclusion criteria

DO
- Retrospective review
- Images reviewed on PACS workstations
- Apply inclusion/exclusion criteria
- Data collection into spreadsheet

STUDY
- Determine number of exams that included the breast in FOV
- Exclude exams that could not avoid breast tissue
- Calculate number of exams by hospital site and shift

METHODS

Inclusion Criteria
- Female
- Age 12-50
- Routine CT exam of abdomen and pelvis
- Study between December 2017 – January 2018
- Re-study in September 2018 following intervention

Retrospective review
- PACS Search Filters
- Images reviewed on PACS workstations

Data Collection
- Exam date
- Patient age
- Breast in FOV?
- If yes, was it preventable?
- Hospital site
- Shift
- Accession number
- Indication
- DLP (mGy*cm)
RESULTS, PART 1

n = 100 exams

Hospital A
n = 52
- Day shift: 9 exams (34.6%)
- Evening shift: 11 exams (42.3%)
- Night shift: 6 exams (23.1%)

Breast in FOV:
- 26 exams (50%)

Hospital B
n = 48
- Day shift: 16 exams (41.0%)
- Evening shift: 17 exams (43.6%)
- Night shift: 6 exams (19.4%)

Breast in FOV:
- 39 exams (81.2%)

CAUSE-AND-EFFECT DIAGRAM

People
- Tech forgot
- Tech doesn’t know

Policies & Practice
- Standard CT protocol scan range
- Dose reduction policies
- Teaching environment
- Supervision policies
- Feedback policies

Materials & Technology
- Appropriateness of study
- Repeat studies performed

Workflow
- Tech busy
- Tech distracted

Breast in scanned FOV (increased CT dose)

Adapted from: Kruskal JB et al. Quality Improvement in Radiology: Basic Principles and Tools Required to Achieve Success.
TECHNOLOGIST EDUCATION: COLLIMATION EXAMPLES

<table>
<thead>
<tr>
<th>Collimation</th>
<th>Topogram</th>
<th>Coronal plane</th>
<th>Axial plane</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adequate</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inadequate</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

RESULTS, PART 2

- **n = 100 exams after intervention**
 - **Hospital A**
 - Day shift: 4 exams (28.6%)
 - Evening shift: 7 exams (50%)
 - Night shift: 3 exams (21.4%)
 - Breast in FOV: 14 exams (25.9%)
 - **Hospital B**
 - Day shift: 7 exams (21.9%)
 - Evening shift: 16 exams (50%)
 - Night shift: 9 exams (28.1%)
 - Breast in FOV: 32 exams (69.6%)
CONCLUSION

• From our preliminary data, CT technologists overnight did better at scan collimation than their counterparts during the day and evening shifts.

• Following technologist education, there was an overall decrease in cases including the breasts within the FOV at both hospitals.

<table>
<thead>
<tr>
<th></th>
<th>Hospital A</th>
<th>Hospital B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prior to intervention</td>
<td>26 (50%)</td>
<td>39 (81.2%)</td>
</tr>
<tr>
<td>Following intervention</td>
<td>14 (25.9%)</td>
<td>32 (69.6%)</td>
</tr>
<tr>
<td>% change</td>
<td>46.1%</td>
<td>17.9%</td>
</tr>
</tbody>
</table>

• In conclusion, the principles of ALARA, continuous QI, technologist education and routine surveillance can help to decrease radiation dose to the female breast.

REFERENCES

