

# United We Stand

#### Contrast Reaction Management Training for Outpatient Imaging Centers with Emphasis on Teamwork

Natalie Crawford MD, Dave Riesberg, Sadaf Zaidi MD Julie Kaczmark MD, Robin Hines MD, Dwayne Marsh

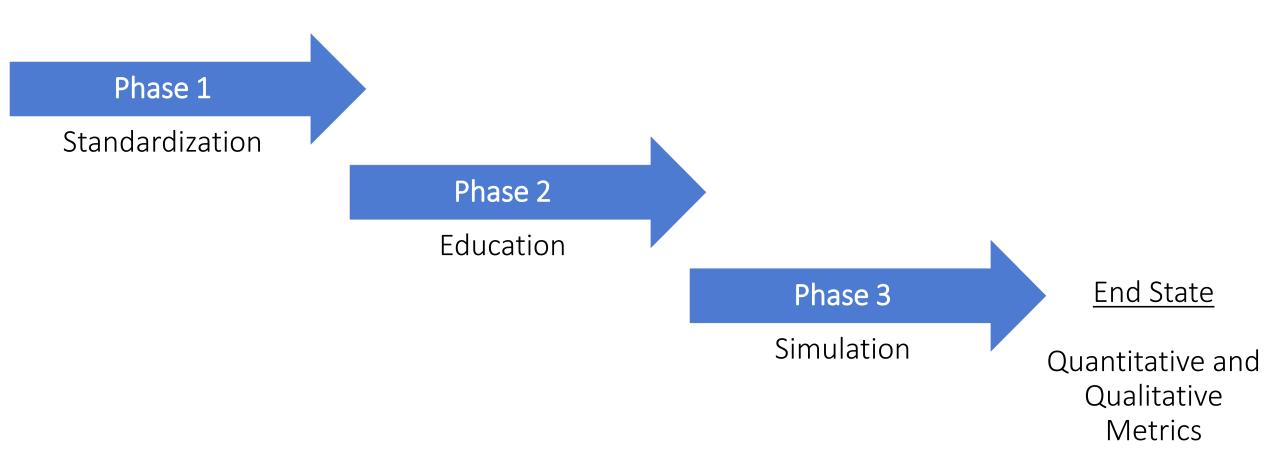
Inland Imaging - Spokane, WA

Providence Sacred Heart Medical Center - Spokane, WA



Washington State University - Elson S. Floyd College of Medicine






#### Purpose and Background

- Purpose:
  - Create capable, well-trained teams by restructuring contrast reaction training in a large private practice's outpatient imaging centers in order to enable efficient and effective team response to contrast reactions.
- Background:
  - Following a life threatening contrast reaction, root cause analysis revealed significant deficiencies involving contrast reaction management and associated training.
  - Two of the authors attended a reaction management training course, assisting in the development of our interdisciplinary training plan.
  - Teams of respondents included radiologists, radiology residents, nurses, radiology technologists, and patient care assistants. Over 130 personnel participated.



### Methods: Three Phase Approach





### Phase 1: Standardization

- Start:
  - Instructors visited each outpatient location.
- Key Tasks:
  - Assessed existing equipment.
  - Interviewed pharmacists, nurses, and technologists regarding current contrast reaction practices.
  - Identified essential equipment and medications needed to manage reactions.
  - Brief clinic personnel on use and location of new standardized reaction boxes.
- End:
  - Standardized and simplified emergency contrast reaction boxes across all outpatient clinics.



### Phase 1: Standardization



**Prior to Standardization** 



After Standardization

Key Reaction Kit Contents:

- IV/IM Epinephrine Kits
- Atropine
- Albuterol Inhaler
- Benadryl
- Pulse Oximeter
- Written Medication Guide
- Recorder/EMS handoff sheet



### Phase 2: Education

- Start:
  - Administered written test to assess baseline knowledge of physicians, residents, nurses, and PCAs.
- Key Tasks:
  - Personnel complete educational slide presentation with pre and post assessments.
    - Results indicated an additional training modality was needed prior to the simulation lab.
  - Created professionally recorded videos of five common contrast reactions, as well as six medication 'how to' videos.
  - Participants watched online videos with pre and post assessments.
- End:
  - Participants now maximally prepared for simulation lab. Eight data points gathered to assess training program effectiveness.

### Inland Imaging





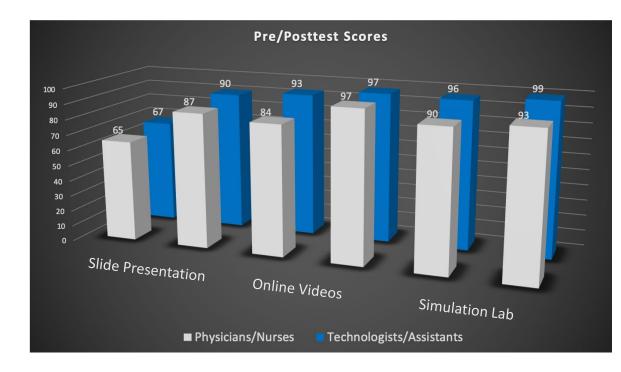




#### Video Screenshots

Medication preparation, bronchospasm, laryngeal edema, hives, reaction box overview, EMS handoff (starting top left, counterclockwise).




### Phase 3: Simulation

- Start:
  - Teams of 4-6 participants consisting of at least one physician, nurse, technologist, and PCA were given a simulation lab pretest.
- Key Tasks:
  - Utilized a robotic manikin, capable of producing clinical symptoms and real time change to vital signs with various interventions.
  - Teams responded to six different contrast reaction simulations: hives, bronchospasm, laryngeal edema, vasovagal, anaphylaxis, and multi-symptom.
  - Participants utilized the standardized emergency contrast reaction box.
  - A debrief was completed after each simulation.
- End:
  - Over 130 participants completed the final simulation lab training. Four additional quantitative data points gathered as well as qualitative data from surveys.

## Inland Imaging



- Quantitative Data:
  - Collected from multiple choice exams administered before and after each training modality; net of 12 data points.
- Statistically significant improvement by both groups during the first two phases (p=<.05)</li>
- Statistically significant improvement by both groups from initial assessment to completion of the training program (p=<.05)</li>
- Posttest scores improved with each phase of the program
- Qualitative: preference for video/simulation training. Lack of standardization/knowledge prior to training.



### <u>Conclusion</u>

- Meaningful improvement throughout the training program
- Multiple learning modalities:
  - Prior to simulations, pretest scores above 90%, improving from initial 65%.
  - Qualitative data collected reinforced the three-part training program.
- Simulation lab cost:
  - Well prepared teams allows efficient use of time
  - Supplemental videos may be a lower cost alternative.
- Subjectively:
  - Participants enthusiastic about simulation lab training.
  - Rotating various roles amongst team members yielded higher success/fluidity.
- Way forward:
  - Surveys to measure confidence levels. Future on site/in-clinic training.