The Effects of a National Dissemination Project Aimed at Reducing Radiation Dose for Kidney Stone CT

Melissa M. Shaw1, Priyadarshini Karthik2, Debapriya Sengupta2, Judy Burleson2, Mythreyi Chatfield3, Mannudeep Kalra3, Chris Moore1

1Department of Emergency Medicine, Yale University School of Medicine, 2American College of Radiology, 3Department of Radiology, Massachusetts General Hospital

Purpose

- Kidney stones (KS) afflict 1 in 11 people in the U.S. and are responsible for 2 million ED annual visits, often in young patients who will have repeat presentations.
- ACR Appropriateness Criteria promotes reduced-radiation dose CT (RDC) exams for KS evaluation, however in 2015-2016 less than 8% of these KSCTs met reduced dose criteria (DLP <200).1
- Using the ACR Dose Index Registry (DIR) we performed a randomized, controlled trial to measure the effect of the dose optimization in stone evaluation (DOSE) intervention on KSCT radiation dose.

Methods

- Intervention includes access to free online educational modules on the RadIQ platform (http://www.radiq.org) and/or individualized consultation.
- The first educational module provides RDCT images to increase users’ KS diagnostic proficiency and other significant findings.
- The second module provides an overview of CT scanner settings and their subsequent effects on dose.
- DOSE consultation consists of:
 - Conference calls to discuss facilities’ obstacles for protocol change
 - Provide PQI guidance
 - Provide recommendations for RDCT protocols specific to facilities’ scanner(s) (Figure 2)
- Our statistical analysis sought to compare mean facility DLP for the baseline year (2015) and intervention year (2017) between control facilities and intervention facilities that engaged in DOSE intervention.
- Medians and means with 95% confidence intervals were compared using a student’s t-test.

Results

<p>| Mean Facility DLP (mGy·cm) for control and DOSE participating intervention groups |</p>
<table>
<thead>
<tr>
<th>Control Facilities</th>
<th>DOSE Facilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Facility n</td>
<td>2015</td>
</tr>
<tr>
<td>Exam n</td>
<td>50,190</td>
</tr>
<tr>
<td>Mean</td>
<td>691.3</td>
</tr>
<tr>
<td>(Std Dev)</td>
<td>(224.5)</td>
</tr>
<tr>
<td>Median</td>
<td>688</td>
</tr>
<tr>
<td>(IQR)</td>
<td>(528.8-836.1)</td>
</tr>
<tr>
<td>Min</td>
<td>191</td>
</tr>
<tr>
<td>Max</td>
<td>1414.1</td>
</tr>
</tbody>
</table>

*P-value<0.05

- Of the 108 facilities randomized to intervention, 33 (29%) participated in DOSE.
- Table 1 demonstrates facility mean DLP at baseline and follow up.
- There was a significant change in facility mean DLP (-149.2 mGy·cm, 95% CI: 5.87-170.76) for the facilities engaging in the intervention (P<0.05) compared to the control group’s mean facility DLP (-64.5 mGy·cm, 95% CI 22.37-89.24).

Conclusions

- Practice quality improvement projects, facilitated by education and individualized consultation, can lead to significant reductions in radiation exposure.
- Collaborative efforts such as these can facilitate better adherence to the As Low As Reasonably Achievable (ALARA) principal.
- Future DOSE direction includes providing intervention to control facilities to further promote this important message.

References

Disclosures

- Funding provided by Agency for Healthcare Research and Quality Grant R18HS023778