

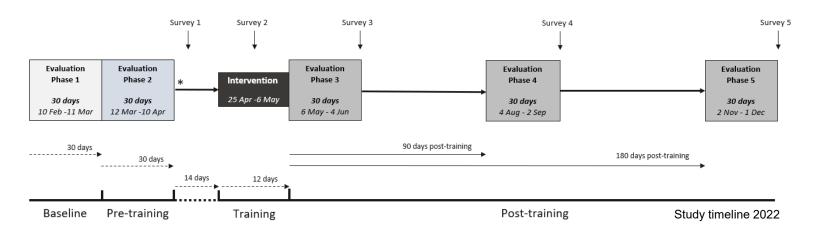
Objective improvements in mammography image quality following individualized breast positioning training informed by artificial intelligence

Ariane Chan¹, Linda Martis¹; Roxanne Baer²; Melissa Marx³; Lisa R. Johnston¹; Kristin Bravo¹; Melissa L. Hill¹; Julia K. Harms¹; and Sally Grady²

Background

Breast positioning a key aspect of mammography image quality (IQ)

Bassett et al., 1993; Taplin et al., 2002; Bae et al., 2014 Current breast positioning assessment manual and subjective

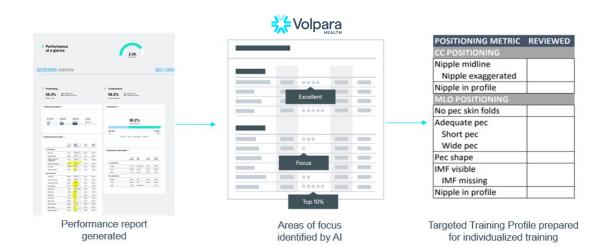

Targeted initiatives improve image quality

Pal et al., 2018; Santner et al., 2021; Kozlov et al., 2023

Purpose: to evaluate the IQ impact of expert hands-on breast positioning training, individualized to technologists as informed by an artificial intelligence IQ assessment system

Methods

Study Timeline



- Volpara Analytics™ in use >2 years at Control & Intervention Sites prior to study
- No intervention at Control Site & no specific quality improvement objectives during study period
- Technologist ('Tech') inclusion criteria: acquired >90 images per eval. period

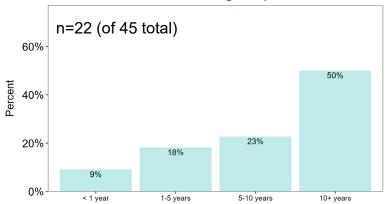
Methods

Training

- Training individualized by objective evidence from Volpara[®]
 Analytics™ metrics
- Hands-on positioning training by Mammography Educators® via The Miller Method™

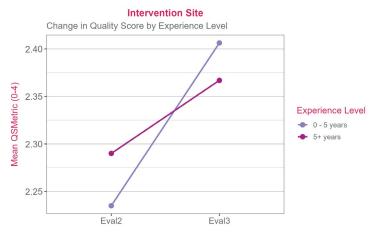
Techs & training

Number Techs trained per positioning metric:


	Total Techs	Percent
Metrics	Trained out of 33	Trained
CC Nipple in Profile	29	91%
MLO Nipple In Profile	29	91%
MLO IMF Visible - IMF Skin Folds	28	88%
MLO No Pec Skin Folds	28	88%
MLO Pec Shape	26	81%
CC No Cutoff	21	66%
CC Nipple Midline - Nipple Exaggerated	21	66%
MLO No Cutoff	19	59%
MLO IMF Visible	18	56%
MLO Adequate Pec - Narrow Pec	16	50%
CC Nipple Midline	15	47%
CC Nipple Midline - Nipple Excessive Exaggerated	13	41%
MLO Adequate Pec	11	34%
MLO Adequate Pec - Short Pec	11	34%
MLO Adequate Pec - Wide Pec	11	34%
CC PNL Met	6	19%
MLO Pec To PNL Met	5	16%
MLO IMF Visible - IMF Missing	4	13%

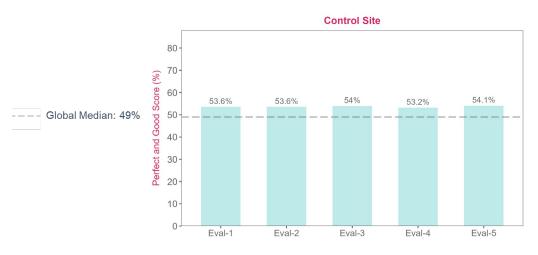
^{*}n=33 included in study of 48 total trained

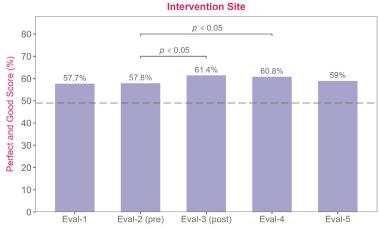
KBEC Site - Technologist Experience


OIA Site - Technologist Experience

Quality Score (QS)

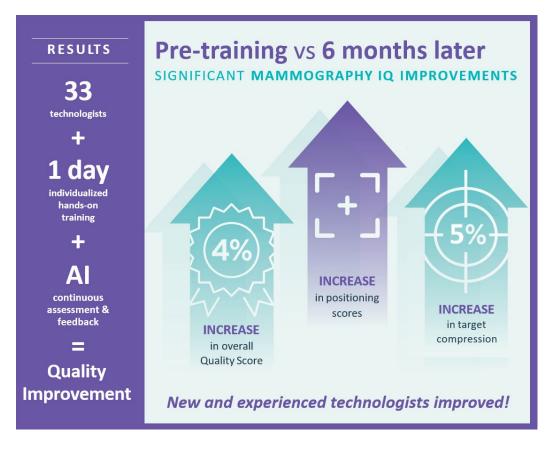
- +4% QS improvement at Intervention Site (p<0.05)
 - sustained for 6 months
 - Techs of all experience levels improved





PGMI

- Early Intervention Site quality improvements driven by increased %P+G (p<0.05)
 - 57.8%—61.4% 30 days post-training & 60.8% 90 days post-training


Compression

- Increased % target compression in last eval. period (p<0.05)
 - 55.6%—58.3%, 180 days post-training

Summary

- Al-informed individualized and hands-on Tech training resulted in significant and sustained mammography IQ improvements across experience levels
- Quality improvement drivers changed over time, suggesting ongoing monitoring is important to identify new areas of focus and training opportunities

THANK YOU

