Iodine Contrast Media and Computer Tomography Enhancement: Less is More (or at Least Equal)?

BACKGROUND

Recent strategies to reduce radiation exposure in CT examinations involve lower tube voltage (kVp) (automated dose modulation) combined with iterative reconstruction (IR).

Iodine attenuation increases at lower kVp values as the mean photon energy approaches the k-edge value of iodine (33keV).

Graph demonstrates iodine enhancement increase when using different kVp values at same CM iodine concentration.

- **kVp**: Increased image noise (N) is a consequence of imaging at low Kvp due to the absorption of X-rays in soft tissues.
- **IR**: Alternative image reconstruction algorithm to filtered back projection to reduce noise without impairing signal.
- **Enhancement in contrast CT**
- **Delivery Iodine rate in target structures**
BACKGROUND

Increased iodine enhancement with lower kVp can be used as a complementary approach to reduce contrast media (CM) dose to maintain noise image level and image diagnostic quality.

The combination of IR and low kVp scan allows a decrease in the dose of intravenous contrast medium with preservation of image quality.

Improve safety and tolerability of CM injections during CT examinations.

CM volume reduction protocol

- Implies in a shorter injection duration and earlier enhancement peak.
- Is complex and associated with iodine concentration, and patients body mass index (BMI) and heart rate.

Graphic comparing shorter CM injection duration (blue) compared to a longer CM injection (purple) due to volume reduction. The CM volume reduction implies in an earlier enhancement when compared to a higher CM volume injection.

It is possible to achieve good enhancement of vessels and parenchymal structures, with low volume injection using high iodine concentration CM.
Achieving ideal iodine enhancement in abdominal CT and reduced CM volume

METHODS

A worldwide shortage of iodine CM in the latter half of 2022 and the beginning of 2023 necessitated its judicious use in healthcare facilities and clinical practice.

In an effort to enhance institutional injection protocols for the safe use of iodine CM, a high-concentration, multi-dose iodine CM was introduced in our CT service.

Incorporating protocol parameters such as CarekV and IR to enhance image quality while employing lower kVp settings and reducing the volume of iodine contrast media in abdominal CT examinations.

Applying a new formula to calculate CM volume for abdominal CT scans

<table>
<thead>
<tr>
<th>Reference kV</th>
<th>New kV</th>
<th>% CM safe</th>
</tr>
</thead>
<tbody>
<tr>
<td>120 kV</td>
<td>120 kV</td>
<td>-</td>
</tr>
<tr>
<td>120 kV</td>
<td>110 kV</td>
<td>10,2%</td>
</tr>
<tr>
<td>120 kV</td>
<td>100 kV</td>
<td>19,9%</td>
</tr>
<tr>
<td>120 kV</td>
<td>90 kV</td>
<td>30,4%</td>
</tr>
<tr>
<td>120 kV</td>
<td>80 kV</td>
<td>40%</td>
</tr>
<tr>
<td>120 kV</td>
<td>70 kV</td>
<td>49,2%</td>
</tr>
</tbody>
</table>

CT scanner manufacture recommendation

Optimizing kVp values according to automatic exposition control (modulation), following manufacturers recommendations

Patient weight x 1.3 mL - % kVp reduction according manufacturers recommendation

Qualitative and quantitative data analyses, along with retrospective comparative analyses, were conducted.
RESULTS
(Quantitative analyses)

AS2 and AS3 (control group)
- 120kV as reference for abdominal CT
- Iodine CM volume injected:
 \[1.3\text{ml/kg} \times \text{patient weight} \]
(institutional protocol for abdominal CT contrast scans)

SOMATOM Flash and Force CT systems (Siemens):
(CM volume reduction application group)
- 120kV as reference for abdominal CT + new kV modulation applied
- Iodine CM volume injected:
 \[\text{Patient weight} \times 1.3 \text{ mL} - \% \text{kVp reduction according manufacturers recommendation} \]

FORCE: 39% volume CM reduction

Graphic demonstrates average CM volume injected according to patients’ weight (%). Compared to AS2 and AS3 (control group), Flash and Force CT scanners presented significant CM dose reduction according to patients’ weight (30% and 39% respectively).

Graphic demonstrates average CM volume injected (%) according to patients’ weight and kV modulation in Force CT scanner. Large kVp options (70 to 150kVp) imply more flexibility to reduce CM volume according to kVp modulation manufacturers recommendations.
1. Evaluating hepatic parenchyma enhancement (HU): portal phase – non-contrast phase in the same patient

Literature recommends an hepatic parenchyma enhancement difference between portal phase and non-contrast phase ≥ 50HU, reached using high concentration iodine CM in lower doses.

2. Comparing hepatic parenchyma enhancement (HU) in the portal phase from two patients which performed abdominal contrast CT exams before (blue and yellow circles) and during the high iodine concentration CM volume optimization (blue and yellow triangles).

Reached hepatic parenchyma enhancement level in the same patient when compared previous hepatic enhancement versus hepatic enhancement obtained using high concentration iodine CM in lower doses.

Example of hepatic parenchyma enhancement evaluation in the same patient using different ROIs. Non-contrast image (A), portal phase using the institutional protocol performed in 2021 (B), and portal phase with the optimized dose using high iodine CM performed in 2023 (C).
CT scans were not repeated or subjected to additional CM injections

Example of abdominal CT for abdominal pain investigation. The patient weighted 53 kg and realized intravenous CM injection of 30mL high iodine CM (400 I/mg); 70kV AEC modulation. Arterial phase (A) and portal phase (B and C).

Achieved CM volume reduction more than 30% patient’s weight

Example of abdominal CT to investigate kidney infection. The patient weighted 78 kg and realized intravenous CM injection of 45mL high iodine CM (400 I/mg); 70kV AEC modulation. Portal phase (A, B and C).
Utilizing a combination of **IR and low kVp scans** results in reduced intravenous CM dosage while maintaining **image quality**.

High-concentration iodine CM can be a powerful tool in low-radiation dose CT examinations protocol.

Reducing CM volume is desirable to avoid contrast-induced **nephropathy**, especially for oncology patients (multiple risk factors for kidney injury).
REFERENCES

BUSHONG S. Ciência, radiologia para tecnólogos. Física. Biologia e Proteção. 9ª edição.

Thank You!

Contact: Larissa.marciano72@gmail.com