

Diagnostic Errors in Neuroradiology, Physician Experience Level and Tumor Board Participation at a Single Tertiary Academic Center

M. Baggett¹, L. Qi¹, R. Assadsangabi¹, O. A. Raslan¹, J. Chang¹, M. Bobinski¹, L. Hacein-Bey¹, R. E. Latchaw¹, V. Ivanovic¹;

¹University of California, Davis; Sacramento, CA, USA

Contact: michaeljosephbaggett@gmail.com

Financial disclosures/conflicts of interest: None

Introduction

- Error rates for diagnostic radiology range between 1.7-9%.
 1,2,11,3-10
- When there is high prevalence of abnormalities on the radiology studies, error rates range from 12.4-50%.¹²⁻¹⁹
- Purpose: explore the correlations of tumor board (TB) attendance and years of post-fellowship practice (CPY) with error rates at a single tertiary academic medical center (UC Davis).

Methods

- Retrospective study with Institutional Review Board approval.
- Searched internal Neuroradiology Quality Assurance (QA) database for errors made by attending neuroradiologists (n=11) at UC Davis from 2014 – 2020.
- All misses confirmed by two neuroradiologists and assigned a RadPeer score.
- Calculated post-fellowship years of clinical practice (CPY) and frequency of TB attendance for each radiologist.
- Specific tumor boards included: Head and Neck (H&N), Skull Base (SKB), Brain, and Pediatric Neuroradiology (PN).

Methods

- Classified errors as H&N, SKB, Brain, or PN misses.
- Correlated CPY and specific TB attendance rates with H&N, SKB, Brain, and PN misses using Spearman's rank correlation coefficients.
- A scatter plot matrix was generated using the rank values of these variables.

Results

Table 1. Summary Statistics of the Metrics of the Clinical Experience of Attending Neuroradiologists and Error Rate Measures

Variable	Mean	Std Dev	Median	Quartile Range	Range	Minimum	Maximum
Brain TB	12.27	11.43	15.00	18.00	35.00	0.00	35.00
Brain errors	1.28	0.73	1.27	1.15	2.42	0.59	3.02
CPY	13.30	15.91	6.10	25.40	43.70	0.30	44.00
H&N TB attendance	20.82	23.58	13.00	35.00	68.00	0.00	68.00
H&N errors	0.46	0.31	0.40	0.58	0.93	0.00	0.93
PN TB attendance	9.18	16.23	5.00	15.00	55.00	0.00	55.00
PN errors	0.52	0.37	0.50	0.47	1.37	0.00	1.37
SKB errors	0.43	0.57	0.24	0.41	1.92	0.00	1.92
Total errors	3.55	2.29	2.95	2.12	8.73	0.59	9.32
Volume Read Exams	16668.00	11892.97	16617.00	24207.00	32906.00	1078.00	33984.00
Total TB attendance	40.18	36.99	36.00	85.00	95.00	0.00	95.00

TB = Tumor Board; CPY= Post-fellowship years of clinical practice; H&N = Head and Neck; PN = Pediatric Neuroradiology; SKB = Skull Base; Volume Read Exams = total volume of read studies during the study period. Total, Brain, H&N, SKB, PN errors expressed as errors per 1,000 interpreted exams.

Results

Table 2. Spearman's Rank Correlation Coefficients of Metrics of the Clinical Experience of Attending Neuroradiologists with Error Rate Measures (with p-values)

Variable	T Errors	H&N Errors	SKB Errors	Brain Errors	PN Errors
Total TB	-0.89	-0.81	-0.66	-0.82	-0.48
	(p=0.0002)	(p=0.002)	(p=0.03)	(p=0.002)	(p=0.13)
HN TB	-0.90	-0.79	-0.65	-0.79	-0.42
	(p=0.0002)	(p=0.004)	(p=0.03)	(p=0.004)	(p=0.19)
Brain TB	-0.81	-0.79	-0.54	-0.75	-0.48
	(p=0.002)	(p=0.004)	(p=0.08)	(p=0.008)	(p=0.13)
PN TB	-0.40	-0.46	-0.10	-0.36	-0.34
	(p=0.23)	(p=0.15)	(p=0.77)	(p=0.28)	(p=0.30)
CPY	0.05	0.08	0.28	-0.10	-0.16
	(p=0.88)	(p=0.82)	(p=0.41)	(p=0.77)	(p=0.63)

TB = Tumor Board; CPY= Post-fellowship years of clinical practice; H&N = Head and Neck; PN = Pediatric Neuroradiology; SKB = Skull Base; T = Total. Total, H&N, SKB, Brain, PN errors expressed as errors per 1,000 interpreted exams.

Statistically significant correlation coefficients bolded for clarity.

Results

Figure 1. The Scatter Plot Matrix of the Ranks of Metrics of the Clinical Experience of Attending Neuroradiologists and the Ranks of Error Rate Measures.

Footnotes:

rTotalError, rH_NError, rSKBError, rBrainError, rPNError, rTotal_TB, rH_N_TB, rBrain_TB, rPN_TB, rCPYyrs: rank of Total Error, HN Error, SKB Error, Brain Error, PN Error, Total TB, HN TB, Brain TB, PN TB and CPY, respectively. TB = Tumor Board; CPY= Post-fellowship years of clinical practice; H&N = Head and Neck; PN = Pediatric Neuroradiology; SKB = Skull Base. Total, Brain, H&N, SKB, PN errors expressed as errors per 1,000 interpreted exams.

Discussion/Conclusion

- Strong correlation between high overall Tumor Board participation and low yearly error rates.
- Strong correlation between high Head and Neck, Brain, and Skull Base Tumor Board participation rates and low error rates in those areas.
- Correlation between Pediatric Neuroradiology Tumor Board and Pediatric Neuroradiology error rates was not statistically significant.
- H&N TB is held once per week, Brain TB every other week, and PN TB once per month: so, lower power for Pediatric Neuroradiology TB.
- No correlation between CPY and error rates.
- Recommend increased/continued tumor board participation throughout career.

References

- 1. GARLAND LH. On the scientific evaluation of diagnostic procedures. Radiology 1949;52. https://doi.org/10.1148/52.3.309.
- 2. Wu MZ, McInnes MDF, Macdonald DB, Kielar AZ, Duigenan S. CT in adults: Systematic review and meta-analysis of interpretation discrepancy rates. Radiology 2014;270. https://doi.org/10.1148/radiol.13131114.
- 3. Donald JJ, Barnard SA. Common patterns in 558 diagnostic radiology errors. J Med Imaging Radiat Oncol 2012;56. https://doi.org/10.1111/j.1754-9485.2012.02348.x.
- 4. Babiarz LS, Yousem DM. Quality control in neuroradiology: Discrepancies in image interpretation among academic neuroradiologists. Am J Neuroradiol 2012;33. https://doi.org/10.3174/ajnr.A2704.
- 5. Soffa DJ, Lewis RS, Sunshine JH, Bhargavan M. Disagreement in interpretation: A method for the development of benchmarks for quality assurance in imaging. J Am Coll Radiol 2004;1. https://doi.org/10.1016/j.jacr.2003.12.017.
- 6. Borgstede JP, Lewis RS, Bhargavan M, Sunshine JH. RADPEER quality assurance program: A multifacility study of interpretive disagreement rates. J Am Coll Radiol 2004;1. https://doi.org/10.1016/S1546-1440(03)00002-4.
- 7. Viertel VG, Babiarz LS, Carone M, Lewin JS, Yousem DM. Quality control in neuroradiology: Impact of trainees on discrepancy rates. Am J Neuroradiol 2012;33. https://doi.org/10.3174/ajnr.A2933.
- 8. Lauritzen PM, Stavem K, Andersen JG, Stokke MV, Tennstrand AL, Bjerke G, et al. Double reading of current chest CT examinations: Clinical importance of changes to radiology reports. Eur J Radiol 2016;85. https://doi.org/10.1016/j.eirad.2015.11.012.
- 9. Lian K, Bharatha A, Aviv RI, Symons SP. Interpretation errors in CT angiography of the head and neck and the benefit of double reading. Am J Neuroradiol 2011;32. https://doi.org/10.3174/ajnr.A2678.
- 10. Kim YW, Mansfield LT. Fool me twice: Delayed diagnoses in radiology with emphasis on perpetuated errors. Am J Roentgenol 2014;202. https://doi.org/10.2214/AJR.13.11493.
- 11. Renfrew DL, Franken EA, Berbaum KS, Weigelt FH, Abu-Yousef MM. Error in radiology: Classification and lessons in 182 cases presented at a problem case conference. Radiology 1992;183. https://doi.org/10.1148/radiology.183.1.1549661.
- 12. Loevner LA, Sonners AI, Schulman BJ, Slawek K, Weber RS, Rosenthal DI, et al. Reinterpretation of cross-sectional images in patients with head and neck cancer in the setting of a multidisciplinary cancer center. Am J Neuroradiol 2002;23.
- 13. Rosenkrantz AB, Duszak R, Babb JS, Glover M, Kang SK. Discrepancy Rates and Clinical Impact of Imaging Secondary Interpretations: A Systematic Review and Meta-Analysis. J Am Coll Radiol 2018;15. https://doi.org/10.1016/j.jacr.2018.05.037.
- 14. Briggs GM, Flynn PA, Worthington M, Rennie I, McKinstry CS. The role of specialist neuroradiology second opinion reporting: is there added value? Clin Radiol 2008;63. https://doi.org/10.1016/j.crad.2007.12.002.
- 15. Kabadi SJ, Krishnaraj A. Strategies for Improving the Value of the Radiology Report: A Retrospective Analysis of Errors in Formally Over-read Studies. J Am Coll Radiol 2017;14. https://doi.org/10.1016/j.jacr.2016.08.033.
- 16. Revesz G, Kundel HL. Psychophysical studies of detection errors in chest radiology. Radiology 1977;123. https://doi.org/10.1148/123.3.559.
- 17. Quekel LGBA, Kessels AGH, Goei R, Van Engelshoven JMA. Miss rate of lung cancer on the chest radiograph in clinical practice. Chest 1999;115. https://doi.org/10.1378/chest.115.3.720.
- 18. Abujudeh HH, Boland GW, Kaewlai R, Rabiner P, Halpern EF, Gazelle GS, et al. Abdominal and pelvic computed tomography (CT) interpretation: Discrepancy rates among experienced radiologists. Eur Radiol 2010;20. https://doi.org/10.1007/s00330-010-1763-1.
- 19. Karmazyn B, Wanner MR, Marine MB, Tilmans L, Jennings SG, Hibbard RA. The added value of a second read by pediatric radiologists for outside skeletal surveys. Pediatr Radiol 2019;49. https://doi.org/10.1007/s00247-018-4276-8.
- 20. Zan E, Yousem DM, Carone M, Lewin JS. Second-opinion consultations in neuroradiology. Radiology 2010;255:135–41. https://doi.org/10.1148/radiol.09090831.
- 21. Goldberg-Stein S, Frigini LA, Long S, Metwalli Z, Nguyen X V., Parker M, et al. ACR RADPEER Committee White Paper with 2016 Updates: Revised Scoring System, New Classifications, Self-Review, and Subspecialized Reports. J Am Coll Radiol 2017;14:1080–6. https://doi.org/10.1016/j.jacr.2017.03.023.
- 22. Lysack JT, Hoy M, Hudon ME, Nakoneshny SC, Chandarana SP, Matthews TW, et al. Impact of neuroradiologist second opinion on staging and management of head and neck cancer. J Otolaryngol Head Neck Surg 2013;42. https://doi.org/10.1186/1916-0216-42-39.
- 23. Hatzoglou V, Omuro AM, Haque S, Khakoo Y, Ganly I, Oh JH, et al. Second-opinion interpretations of neuroimaging studies by oncologic neuroradiologists can help reduce errors in cancer care. Cancer 2016;122. https://doi.org/10.1002/cncr.30083.
- 24. Lauritzen PM, Hurlen P, Sandbæk G, Gulbrandsen P. Double reading rates and quality assurance practices in Norwegian hospital radiology departments: Two parallel national surveys. Acta Radiol 2015;56. https://doi.org/10.1177/0284185113519988.
- 25. Lauritzen PM, Andersen JG, Stokke MV, Tennstrand AL, Aamodt R, Heggelund T, et al. Radiologist-initiated double reading of abdominal CT: Retrospective analysis of the clinical importance of changes to radiology reports. BMJ Qual Saf 2016;25. https://doi.org/10.1136/bmjgs-2015-004536.
- 26. Itri JN, Kang HC, Krishnan S, Nathan D, Scanlon MH. Using focused missed-case conferences to reduce discrepancies in musculoskeletal studies interpreted by residents on call. Am J Roentgenol 2011;197. https://doi.org/10.2214/AJR.11.6962.

