

Back To The Future: Improving Reading of Screening Mammograms With a Batched Workflow Utilizing a Live Reading Room Transcriptionist

W. Tania Rahman, MD, Carly Davis, MPH, Rebecca Hall, BS, Rebecca Oudsema, MD, Kimberly Garver, MD

> Department of Radiology University of Michigan

Listed authors have no relevant disclosures

Background

- Screening mammograms contribute to a large workload in the breast imaging department
 - Approximately 500-600 mammograms are performed each week
- Timely issuance of the final radiology report is important to provider and patient satisfaction
- An efficient and sustainable workflow that avoids burnout is necessary to facilitate prompt completion of screening mammography reports and decrease distraction to minimize error and improve patient safety.
- Improved efficiency and decreased distraction and fatigue may reduce errors and improve patient safety
- PROBLEM: At our institution there was an accumulation of unread screening mammograms and delayed reporting resulting in peak weekly mean report turnaround time of 198 hours (8.25 days)

Root Causes & Quality Interventions

Root Cause	Quality Intervention				
1 Interruptions and distractions during the workday	"S" Assignment (Uninterrupted, batch reading with live transcriptionist)				
2 Inefficient paper chart-based workflow	Conversion to paperless, all digital workflow				
Cumbersome report dictation software workflow	Efficient updates to dictation process				

Traditional Workflow States:

 ${\bf N}$ - Interrupted reading of screening mammograms while performing breast procedures without a trainee or transcriptionist

T - Interrupted reading of screening mammograms while performing breast procedures with a trainee but no transcriptionist

QI Initiative:

S - Creation of new assignment with uninterrupted batch reading of screening mammograms with a live transcriptionist

Metrics & Goals

- Total number of studies read per assignment
 - Digital mammogram = 1 point
 - Digital breast tomosynthesis = 2 points
- Study Interpretation Time (minutes/point)
- Report Turnaround Time (TAT, hours)
 - Goal to reduce to < 72 hours
- Survey data on radiologist ratings of fatigue and distraction in the quality initiative (S) vs. traditional assignments (N, T)
 - Goal was to reduce radiologist fatigue and distraction to a rating < 3
- Cost analysis
- GOAL Reduce TAT, fatigue and distraction, and interpretation time after 4 months of implementing QI initiatives

Initials:										
Date:										
Assignment (S, B, X, Call):										
Did you use an RRC live transcriptionist										
for all or majority of the session? (Circle Yes or No)			Yes					N	0	
Did you work with a resident or fellow										
trainee?		Yes				No				
(Circle Yes or No)										
Total number of 2D screeners read*:										
Total number of 3D screeners read*:										
Total time spent reading screeners (exclude breaks):				I	hours					minutes
Total Break Time:										
					hours					minutes
Circle level of distraction during session	1	2	3	4	5	6	7	8	9	10
	Low	-	Ŭ		Ŭ	Ŭ		Ŭ	Ĵ	High
Circle level of fatigue during session	1	2	3	4	5	6	7	8	9	10
	Low	2	Ŭ	-	0	Č	'	Ŭ	0	High
	2011									. ngn

Example of survey administered to radiologists

MiChart Report TAT

Radiologist Surveys

(14 radiologists completed daily surveys in each workflow setting rating fatigue and distraction on a 10-point scale (10 = high))

Turnaround Time Improvements

Mean Weekly Report TAT Improvement

Relative TAT/ Number of Screens

Radiologist Distraction and Fatigue Improvement

Interpretation Time & Cost Analysis

Average interpretation time was slightly lower in the new S setting compared to the traditional workflows (N, T).

Association of Administrators in Academic Radiology (AAARAD) reported payroll expense for live transcriptionist: \$53,893.50/ year = \$207.28/day

Given interpretation times, over an 8-hour shift, total points that can be read per assignment: 165.5 points in traditional N and T setting 192.0 points in S setting

26.5 additional points can be read per day in S

(Equates to approximately 26 2D digital screening mammograms or 13 screening digital breast tomosynthesis studies)

Institutional hospital charge for digital screening mammogram (1 point) = \$725

This results in an additional daily charge of \$19,200.00 for screening mammography services with a daily cost of \$207.28.

Net additional charges generated = \$18,992.72/ day

Limitation - Missed trainee teaching opportunities in S

Conclusions

- QI Initiatives for reading offline screening mammography resulted in
 - Decreased report turnaround time
 - Decreased radiologist fatigue and distraction
 - Improved ease of interpretation
 - An efficient and sustainable solution to providing timely reads on large volumes of offline screening mammograms
- Limitations
 - Differences in work settings in the traditional vs new S workflow limit direct comparison
 - Traditional workflow entailed interrupted reading of screening mammograms while performing procedures while in the S setting there was uninterrupted batch reading
 - This was accounted for by comparing interpretation times for screening mammography only
 - Variability of radiologist assignment to S vs traditional workflow
 - New S assignment produced improved productivity and revenue, but eliminates a teaching opportunity for trainees
 - Surveys- Variable response rates, self reported data including interpretation time

Keys to Success and Future Directions

• Keys to Success

- Goal was to improve ease of work to reduce burnout, which is a welcomed change to staff
- Periodic implementation of QI-initiatives helps avoid overburdening staff
- Open communication regarding changes allowed for easier implementation
- Support from leadership and staff
- Future Directions
 - Expand digitization and improved safety and efficiency to other divisional workflows
 - Reduce burdensome tasks to allow radiologists to focus on image interpretation to improve safety and reduce errors

