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Purpose: To perform a radiogenomic analysis of women with breast 
cancer to study the multiscale relationships among quan-
titative computer vision–extracted dynamic contrast ma-
terial–enhanced (DCE) magnetic resonance (MR) imaging 
phenotypes, early metastasis, and long noncoding RNA 
(lncRNA) expression determined by means of high-resolu-
tion next-generation RNA sequencing.

Materials and 
Methods:

In this institutional review board–approved study, an au-
tomated image analysis platform extracted 47 computa-
tional quantitative features from DCE MR imaging data 
in a training set (n = 19) to screen for MR imaging bio-
markers indicative of poor metastasis-free survival (MFS). 
The lncRNA molecular landscape of the candidate feature 
was defined by using an RNA sequencing–specific nega-
tive binomial distribution differential expression analysis. 
Then, this radiogenomic biomarker was applied prospec-
tively to a validation set (n = 42) to allow prediction of 
MFS and lncRNA expression by using quantitative poly-
merase chain reaction analysis.

Results: The quantitative MR imaging feature, enhancing rim 
fraction score, was predictive of MFS in the training set 
(P = .007). RNA sequencing analysis yielded an average 
of 55.7 3 106 reads per sample and identified 14 880  
lncRNAs from a background of 189 883 transcripts per 
sample. Radiogenomic analysis allowed identification of 
three previously uncharacterized and five named lncRNAs 
significantly associated with high enhancing rim fraction, 
including Homeobox transcript antisense intergenic RNA 
(HOTAIR) (P , .05), a known predictor of poor MFS in 
patients with breast cancer. Independent validation con-
firmed the association of the enhancing rim fraction phe-
notype with both MFS (P = .002) and expression of four 
of the top five differentially expressed lncRNAs (P , .05), 
including HOTAIR.

Conclusion: The enhancing rim fraction score, a quantitative DCE MR 
imaging lncRNA radiogenomic biomarker, is associated 
with early metastasis and expression of the known predic-
tor of metastatic progression, HOTAIR.
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Long noncoding RNAs (lncRNAs), 
defined as noncoding transcripts 
greater than 200 nucleotides, 

represent an important class of regu-
latory RNAs that possess exquisite cell 
and tissue specificity and are critical to 
maintaining tissue structure and orga-
nization (1–3). Their role in breast can-
cer and in other solid tumors is increas-
ingly being recognized (4–6). Indeed, 
dysregulated expression of the lncRNA, 
homeobox transcript antisense inter-
genic RNA (HOTAIR), has been shown 
to directly contribute to large-scale al-
terations in homeotic regulation and to 
be a powerful driver of metastasis in 
patients with breast cancer (4). Unfor-
tunately, despite an increasing appreci-
ation of the critical role lncRNAs play 
in cell fate, little is known about their 
relationship with systems-level pheno-
types captured at noninvasive imaging.

A number of recent developments 
now afford an opportunity to begin ex-
ploring multiscale relationships of hu-
man breast cancers. First, advances in 
dynamic contrast material–enhanced 
(DCE) breast magnetic resonance 
(MR) imaging enable highly spatially 
and temporally resolved, intact, sys-
tems-level structural and functional 
characterization of breast tumors (7). 
Second, developments in next-gener-
ation sequencing technologies are al-
lowing RNA sequencing at increasing 

Implication for Patient Care

 n A quantitative dynamic contrast-
enhanced MR imaging long non-
coding RNA radiogenomic bio-
marker called the enhancing rim 
fraction score is associated with 
early metastasis and expression 
of the long noncoding RNA, 
Homeobox Transcript Antisense 
Intergenic RNA.

Advances in Knowledge

 n A quantitative dynamic contrast-
enhanced MR imaging biomarker 
called the enhancing rim fraction 
score was associated with 
shorter metastasis-free survival 
(log rank, P = .002) in women 
with invasive ductal breast 
carcinoma.

 n The long noncoding RNA molec-
ular landscape of the enhancing 
rim fraction score was validated 
and shown to be significantly as-
sociated with expression of four 
long noncoding RNAs, including 
Homeobox Transcript Antisense 
Intergenic RNA, a powerful prog-
nostic marker of metastasis-free 
survival.

Published online before print
10.1148/radiol.15142698 Content code: 

Radiology 2015; 275:384–392

Abbreviations:
DCE = dynamic contrast material enhanced
ERF = enhancing rim fraction
HOTAIR = Homeobox Transcript Antisense Intergenic RNA
lncRNA = long noncoding RNA
MFS = metastasis-free survival

Author contributions:
Guarantors of integrity of entire study, S.Y., M.D.K.; 
study concepts/study design or data acquisition or data 
analysis/interpretation, all authors; manuscript drafting or 
manuscript revision for important intellectual content, all 
authors; approval of final version of submitted manuscript, 
all authors; agrees to ensure any questions related to the 
work are appropriately resolved, all authors; literature 
research, S.Y., Y.K., J.H.K., M.D.K.; clinical studies, S.Y., 
W.H., Y.K., M.D.K.; experimental studies, S.Y., W.H., Y.K., 
L.D., D.H., J.H.K., M.D.K.; statistical analysis, S.Y., Y.K., L.D., 
N.J., J.H.K., M.D.K.; and manuscript editing, S.Y., Y.K., L.D., 
N.J., J.H.K., M.D.K.

Conflicts of interest are listed at the end of this article.

resolution, yielding insights into com-
pletely new classes of transcriptional 
and epigenetic regulators in patients 
with breast cancer (8,9). Third, gains 
in computational power and advances 
in algorithm design now allow power-
ful computer-aided lesion detection and 
feature quantification and analysis of 
the massive datasets generated from 
high-throughput sequencing experi-
ments (10,11). Finally, the emergence 
of radiogenomics now allows for intel-
ligent analysis of clinical imaging data 
and seamless integration with clinical, 
tissue, cellular, and molecular pheno-
types to facilitate objective, multiscale 
interrogation of intact systems (12–18). 
We performed a radiogenomic analysis 
of women with breast cancer to study 
the multiscale relationships among 
quantitative computer vision–extracted 
DCE MR imaging phenotypes, early 
metastasis, and lncRNA expression de-
termined by means of high-resolution 
next-generation RNA sequencing.

Materials and Methods

Patients and Specimens
A general overview of the analysis pro-
tocol can be seen in Figure 1. In this 
retrospective study, the institutional 
review board at Seoul National Univer-
sity Hospital (Seoul, Korea) approved 
all protocols for tissue, genomic, and 
clinical analysis, and written informed 
consent was obtained from all patients. 
An initial training set of data from 70 
patients was procured from the Seoul 
National University Hospital database 
between January 1, 2008 and December 
31, 2008. All patients had been proven 
to have invasive ductal carcinoma stage 

IIIC or lower at pathologic examination 
and had undergone baseline DCE MR 
imaging within 21 days of surgery. From 
this initial set of 70 patients, 19 (27.1%) 
were selected on the basis of meeting 
the following specifications: (a) greater 
than 1 mg of high-quality total RNA de-
termined by using the standard 260/280 
ratio of absorbance greater than 2.0 
per sample, (b) RNA integrity number 
greater than 5, and (c) more than 3 
months of clinical follow-up. A similar 
independent validation set of 75 women 
was selected between January 1, 2009 
and July 1, 2010, 42 (56%) of whom had 
been proven to have invasive ductal car-
cinoma stage IIIC or lower at pathologic 
examination and had undergone base-
line DCE MR imaging within 21 days of 
surgery; of these, 39 patients had suffi-
cient high-quality RNA for quantitative 
polymerase chain reaction analysis.

Pathologic Review
Hematoxylin and eosin–stained slides 
of frozen human tumor tissue were 
examined per standard protocol for 
pathologic diagnosis. Immunohisto-
chemical analysis was used to measure 
estrogen receptor, progesterone recep-
tor, tumor protein 53, and epidermal 
growth factor receptor 2 levels. For 
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Figure 1

Figure 1: Illustration shows general overview of radiogenomic analysis to identify and validate a DCE MR imaging biomarker and its relationship to MFS and lncRNA 
expression in breast cancer. QCV = quantitative computer vision, qPCR = quantitative polymerase chain reaction, RG = radiogenomic.

equivocal epidermal growth factor re-
ceptor 2 results, the status was deter-
mined by means of fluorescence in-situ 
hybridization.

Next-Generation RNA Sequencing Protocol
Libraries were constructed with a stan-
dard library preparation kit (TruSeq 
RNA Illumina; San Diego, Calif) ac-
cording to the manufacturer’s instruc-
tions. Sequencing was performed on 
the largest tumor by using a sequenc-
ing platform (HiSeq 2000; Illumina) to 
obtain 100 base pair paired-end reads 
at an average of 50 million reads per 
patient sample. RNA sequencing reads 
were mapped to the human genome by 
using software (TopHat version 1.3.3; 
Center for Bioinformatics and Compu-
tational Biology, College Park, Md). A 
reference genome sequence (hg19, Ge-
nome Reference Consortium GRCh37) 
and annotation data were downloaded 
from the University of California, San-
ta Cruz Web site (http://genome.ucsc.
edu). RNA sequencing produced an av-
erage 6 standard deviation of 55.7 3 
106 6 4.13 reads per breast tumor. Raw 
counts at the transcript level (189 883 
elements) were extracted by using 
software (easyRNASeq version 2.0.8;  
Fred Hutchinson Cancer Research Cen-
ter, Seattle, Wash) (19); 14 880 lncRNAs 
from a genes and gene variants library 

(GENCODE version 7; Wellcome Trust 
Sanger Institute, Hinxton, England) 
were manually curated for further dif-
ferential expression analysis. Only tran-
scripts with nonzero raw values through-
out more than 85% of the samples were 
included.

Real-time Quantitative Polymerase Chain 
Reaction Analysis
Total RNA from tumor tissues was ex-
tracted by using an RNA purification 
kit (RNeasy kit; Qiagen, Valencia, Ca-
lif). Polymerase chain reaction primers 
were designed, synthesized, and then 
validated in a breast MCF10a cell line 
(ATCC CRL-10317; American Type Cul-
ture Collection, Manassas, Va). We used 
300 ng of total RNA from each tumor 
sample to make complementary DNA, 
and quantitative polymerase chain 
reaction was performed in triplicate in 
a 384-well format. The geometric mean 
values of three reference genes (ACTB, 
HUWE1, and TFRC) were used for nor-
malization. Relative quantification values 
were calculated by using the d threshold 
cycle method (20).

Imaging Performance and Analysis
All images were acquired by using a 
1.5-T unit (Signa HDxt; GE Medical 
Systems, Milwaukee, Wis) with the 
following parameters for the bilateral 

protocol: repetition time msec/echo 
time msec, 6.2–6.5/2.2–2.5; sec-
tion thickness, 3.0 mm; field of view, 
18–20 cm; matrix, 320 3 224 or 320 
3 150. For the unilateral protocol, 
the following parameters were used: 
4.9/1.8; section thickness, 1.0–1.3 
mm; field of view, 17–19 cm; matrix, 
448 3 224. Gadopentetate dimeglu-
mine (Magnevist; Schering, Berlin, 
Germany) or gadobutrol (Gadovist; 
Schering) was administered intrave-
nously by means of power injection at 
a dose of 0.1 mmol per kilogram of 
body weight at a flow rate of 2 mL/
sec for 5 seconds. Finally, T1-weighted 
three-dimensional fast low-angle shot 
dynamic sequences were performed, 
with one precontrast and four postcon-
trast-enhanced sagittal volume imaging 
series with intervals of 1.5, 3.5, 4.5, 
and 6.5 minutes or 1.4, 2.8, 4.2, and 
5.6 minutes.

A breast DCE MR imaging segmen-
tation and analysis software tool devel-
oped by author J.H.K.(ImagePrism4D; 
Seoul National University College of 
Medicine, Seoul, Korea) was used for 
imaging analysis (21). After initial au-
tomated tumor segmentation, 47 fea-
tures were automatically evaluated in 
the tumor masks (22). The feature 
set consisted of three categories: geo-
metric, statistical, and spatiotemporal 
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Figure 2

Figure 2: Sagittal images show, A, automated computer-vision DCE MR imaging analysis process. B, Image in a 67-year-old woman with estrogen and progester-
one receptor–positive and human epithelial receptor type 2–negative invasive ductal carcinoma with ERF score of 0.72 (high ERF score). C, Image in a 56-year-old 
woman with estrogen and progesterone receptor–negative and human epithelial receptor type 2–negative invasive ductal carcinoma with ERF score of 0.83 (high ERF 
score). D, Image in a 64-year-old woman with estrogen and progesterone receptor–negative and human epithelial receptor type 2–positive invasive ductal carcinoma 
with ERF score of 0.0049 (low ERF score). E, Image in a 56-year-old woman with estrogen and progesterone receptor–positive and human epithelial receptor type 2 
negative invasive ductal carcinoma with ERF score of 0.038 (low ERF score).

features. Two time points were selected 
for postcontrast volume imaging: the 
imaging time nearest to 2 minutes after 
contrast material injection was chosen 
as time point 1, and that nearest to 6 
minutes was chosen as time point 2. If 
more than one lesion was identified, the 
largest tumor was used for extraction of 
features. All segmentations were inde-
pendently reviewed by two expert radi-
ologists (M.K. and N.C., with 10 and 15 
years of experience, respectively). The 

overall automated imaging workflow is 
presented in Figure 2, A.

Geometric, Statistical, and Spatiotemporal 
Features
Geometric features included largest tu-
mor volume and roundness of the larg-
est tumor, which were computed by 
using volumetric segmentation data on 
a voxel-by-voxel basis. Statistical fea-
tures were computed from the precon-
trast and first and second postcontrast 

imaging data. The features related to 
the intensity probability, such as stan-
dard deviation, entropy, skewness, and 
kurtosis, were computed by using the 
voxel histogram in the three-dimensional 
tumor (23). The features reflecting lo-
cal gray-level co-occurrence matrix con-
trast, gray-level co-occurrence matrix 
homogeneity, and gray-level co-occur-
rence matrix energy and global (the 
seven Hu invariant moments) spatial 
patterns were extracted in the largest 
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section in the three-dimensional tumor 
(24). Contrast enhancement-based spa-
tiotemporal association features were 
calculated on the basis of classification 
of time-intensity curves according to the 
American College of Radiology Breast 
Imaging Reporting and Data System 
MR imaging guidelines and three time-
point methods (25,26). Time-intensity 
curves were quantified for their pla-
teau, persistent, and wash-out pat-
terns on the basis of the time points. 
Additional traits such as enhancing rim 
fraction (ERF) and heterogeneity were 
measured (10,21,23). Further details 
of each imaging trait are provided in 
Table E1 (online).

The entire workflow was imple-
mented twice by two different investi-
gators with combined experience of 25 
years to evaluate reproducibility of the 
image feature measurements, segmen-
tation, and subsequent image feature 
analysis (J.K. and Y.K., with 20 and 5 
years of experience, respectively). Co-
correlation analysis on a trait-by-trait 
basis between the two analyses was 
then performed to evaluate consistency 
of the trait measurements. Also, to as-
sess the repeatability of the segmen-
tation, the spatial correlation between 
different statistical segmentations was 
analyzed by computing the Jaccard-
Tanimoto coefficient. Finally, to identify 
the most informative traits for radioge-
nomic analysis, we filtered traits on the 
basis of their frequency, variance and 
prominence in the data, and indepen-
dence from other traits (Pearson cor-
relation, r , 0.7), and the remaining 
features that passed this correlation 
filter were used for subsequent integra-
tive analysis. Additional details can be 
found in Appendix E1 (online).

Statistical Analysis
For the evaluation of metastasis-free 
survival (MFS), Cox regression analysis 
was used to identify image features 
that were correlated with metastasis. 
The resultant significant image features 
were then used to divide the patients 
in the training set into two groups on 
the basis of the median feature score. 
Kaplan-Meier plots were created, and 
statistical differences were evaluated 

by using the log-rank Mantel-Cox test. 
Differences between the characteristics 
of the training and validation set were 
evaluated by using the Student t test. 
Identification of differentially abundant 
lncRNA transcripts in the training set 
tumor samples was accomplished by us-
ing software (DESeq R package version 
1.6.1; www.bioconductor.org) (27).  
DESeq calculates P values by using a 
negative binomial distribution, which 
accounts for technical and biologic 
variability. Differential expression was 
reported as fold change along with 
Bonferroni corrected P values. For our 
analysis, we defined a significant dif-
ference in the DESeq analysis as a P 
value less than .05 and log2 fold change 
of greater than 1.5. For quantitative 
polymerase chain reaction validation, 
normalized threshold cycle values were 
obtained, and the Spearman rank cor-
relation coefficient was calculated, with 
the lncRNAs that showed a significant 
difference selected. Hypergeometric 
distribution was calculated to assess sta-
tistical significance. The lncRNAs that 
were successfully validated by means of 
quantitative polymerase chain reaction 
analysis were used as inputs for the ln-
cRNA functional analysis tool (lncRNA-
tor version 1.0; Ewha Research Center 
for Systems Biology, Seoul, Korea). 
This tool allows functional investigation 
of lncRNAs by using gene expression 
data from 208 RNA sequencing studies 
(4995 samples) collected from genome 
databases (Gene Expression Omnibus, 
Encyclopedia of DNA Elements, and the 
Cancer Genome Atlas )(28). Software 
(Ingenuity Pathway Analysis; Qiagen, 
Redwood City, Calif) was used for ln-
cRNA pathway enrichment analysis. 
Statistical analyses were performed 
with software (R version 3.0.1; http://
www.R-project.org and SPSS version 
21.0; IBM, Armonk, NY).

Results

Patient Characteristics
No statistically significant differences 
were found between the training and 
validation sets with respect to patient 
age, tumor size, stage, MFS, receptor 

status (estrogen receptor, progesterone 
receptor, human epithelial receptor 
type 2, tumor protein 53, triple nega-
tive status), chemotherapy, and number 
of tumor foci (P . .05). The median 
follow-up duration for the training and 
validation sets was 5.10 and 5.17 years, 
respectively. Detailed patient charac-
teristics for the training and validation 
sets are summarized in Table 1.

Imaging Feature Analysis
The imaging features measured were 
highly consistent throughout the two 
independent analyses, with 46 of 47 
(97.9%) imaging features showing sig-
nificant reproducibility (Pearson corre-
lation coefficient, r . 0.9; P , .001); 
the feature of tumor roundness showed 
a slightly lower but still significant corre-
lation (r = 0.78, P = .003) (Table E2 [on-
line]). The Jaccard index for the statisti-
cal traits between the two independent 
analyses was calculated; the mean 6 
standard deviation for the 39 traits was 
0.80 6 0.15. Twenty-one imaging fea-
tures (two geometric, 13 statistical, and 
six spatiotemporal, Table E1 [online]) 
were used for subsequent radiogenomic 
analysis by applying the filtering step 
(Pearson correlation, r . 0.7), thereby 
eliminating closely related traits.

The ERF Phenotype Is Associated with 
MFS
Cox regression analysis performed on 
the training set by using the 21 imag-
ing features compared with MFS al-
lowed identification of the ERF score 
as the only significant imaging feature 
associated with early occurrence of 
metastasis (P = .017; hazard ratio, 
6.06; 95% confidence interval: 1.39, 
26.5). The binary cutoff value for di-
chotomizing patients into low- versus 
high-ERF score groups was 0.4 (Fig 2, 
B–E). Application of this ERF score 
cutoff in the training set revealed two 
groups (12 patients in the low ERF 
score group, mean ERF score of 0.25; 
seven patients in the high ERF score 
group, mean ERF score of 0.49), with 
an undefined median MFS time for the 
low ERF score (more than 50% were 
still alive at the time of analysis), com-
pared with 1.8 years for the high ERF 
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Figure 3

Figure 3: Graphs show MFS of training and validation sets. (a) Median MFS time in training set for low 
ERF score was undefined and for high ERF score group was 1.8 years (P = .007, log-rank test). (b) Median 
MFS time in validation set for low ERF score was undefined and for high ERF score group was 1.9 years 
( P = .002, log-rank test).

Table 1

Demographics of Training and Validation Set

Variable Training Validation P Value*

No. of patients 19 42
Follow-up time (y)† 5.1 (0.83–9.4) 5.17 (0.35–8.2) .61
Age (y)† 44 (35–70) 45 (28–75) .86
Stage .91
 IA or IB 1 8
 IIA or IIB 12 14
 IIIA, IIIB, or IIIC 6 20
Tumor volume (cm3) 19.3 14.7 .65
Estrogen receptor positive 6 19 .32
Progesterone receptor positive 7 21 .35
Tumor protein 53 positive 13 24 .62
Human epithelial receptor type 2 positive 3 8 .6
Triple negative 5 10 .95
Distal recurrence event 8 18 .96
No. of patients treated with chemotherapy 17 (89) 36 (86) .34
No. of tumor foci† 1 (1–6) 1 (1–13) .42

Note.—Unless otherwise indicated, data are number of patients, with percentage in parentheses.

* Comparison of means by using the Student t test.
† Data are medians, with the range in parentheses.

performed that allowed identification of 
eight lncRNAs at a Bonferroni-adjusted 
significance threshold P value of less than 
.05, and a log2 fold change of greater 
than 1.5. Of these, three are unnamed 
(signified by a code RP11 or LINC). The 
full list is detailed in Table 2.

Relationship between ERF Score and 
LncRNA HOTAIR
Because the lncRNA HOTAIR is a known 
regulator of metastatic progression in 
breast cancer, we specifically evaluated 
whether the ERF score was associated 
with HOTAIR expression. Spearman 
rank correlation between ERF score and 
HOTAIR levels demonstrated significant 
correlation (r = 0.639, P = .003). HO-
TAIR levels also were correlated with the 
binary ERF score (r = 0.538, P = .018).

Validation of the ERF Score with MFS
Cox regression analysis performed on 
the validation set by using the ERF scores 
compared with MFS showed significant 
differences in MFS (P = .009; hazard ra-
tio, 16.3; 95% confidence interval: 1.99, 
133.04). Application of the prespecified 
ERF cutoff value established in the train-
ing set resulted in 27 patients in the low– 
and 15 patients in the high–ERF score 
groups. We found that the binary ERF 
score remained a significant predictor of 
MFS (P = .002, log-rank test), with an 
undefined median survival time (greater 
than 50% alive at the time of analysis) 
versus 1.9 years for the low– versus high–
ERF score groups, respectively (Fig 3b).

Validation of the Relationship between 
the ERF Score and LncRNA Expression
Next, we sought to confirm prospectively 
the radiogenomic associations of the ERF 
phenotype with its predicted lncRNA ex-
pression. Sufficient quality total RNA was 
available for analysis for 39 of 42 (92.8%) 
validation set patients and was used for 
quantitative polymerase chain reaction 
validation. Of the eight lncRNAs identi-
fied in the training set, we selected the 
top five differentially expressed lncRNAs 
(log2 fold change above 2.2) and con-
structed and validated polymerase chain 
reaction primers for validation in the in-
dependent set (Table E3 [online]). Pro-
spective quantitative polymerase chain  

score group (P = .007, log-rank test) 
(Fig 3a).

Differential Expression Analysis of ERF 
Score Reveals the LncRNA Landscape of 
the ERF Score Radiophenotype
Next-generation RNA sequencing pro-
duced a mean of 189 883 transcripts per 

sample. From this, 14 880 lncRNAs were 
extracted and filtered down to 4468 ele-
ments per sample for further differential 
expression analysis. To better under-
stand the relationships among the ERF 
systems-level phenotype captured at DCE 
MR imaging, metastasis, and lncRNA ex-
pression, a radiogenomic analysis was 
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the ERF phenotype, we applied two 
different bioinformatics approaches. 
First, we used software (lncRNAtor 
version 1.0; Ewha Research Center 
for Systems Biology) as a tool to sur-
vey the Cancer Genome Atlas breast 
cancer data for determining the im-
plication of the four lncRNAs. Two 
of the validated lncRNAs, LINC00511 
and HOTAIR, were found to be pre-
sent in higher levels in tumor samples 
of invasive ductal carcinoma of the 
breast than in normal breast tissue on 
the basis of 894 samples (LINC00511 
fold change, 6.25; P , .001; HOTAIR 
fold change, 5.56; P , .001; respec-
tively). LINC00511 was also enriched 
significantly in tumor samples of kid-
ney, head and neck, liver, lung, and 
bladder cancers compared with their 
respective normal tissue samples (P , 
.001). In addition, Ingenuity pathway 
analysis was performed in which four 
associated significant pathways were 
identified (P , .05). These pathways 
included cell cycle, cell death and sur-
vival, cellular development, and cellu-
lar growth and proliferation.

Table 2

Differential Expression of lncRNA, Low versus High ERF

Symbol Ensemble Transcript ID Log
2
 Fold Change Adjusted P Value* Gene Biotype

RP11–278 L15.2–001 ENST00000462931 4.446 ,.001 long noncoding
LINC00511–009 ENST00000457958 2.728 ,.001 long noncoding
HOTAIR ENST00000424518 2.258 ,.001 antisense
AC004231.2–001 ENST00000418393 2.207 ,.001 antisense
RP11–731F5.2–002 ENST00000460164 2.088 ,.001 long noncoding
WWTR1-AS1–003 ENST00000495094 1.796 .017 antisense
BCYRN1–001 ENST00000418539 1.677 .010 long noncoding
ST8SIA6-AS1–001 ENST00000457649 1.633 .014 antisense

* Corrected with Benjamini-Hochberg method.

Figure 4

Figure 4: Graph shows molecular characteristics of the ERF score phenotype in training (n = 19) and validation (n = 42) sets. Continous ERF scores for each 
patient are listed from low to high in the respective data sets. Status of estrogen receptor, progesterone receptor, epidermal growth factor receptor 2, triple negative 
receptor, tumor protein 53, and lncRNA expression are provided as labeled. Recurrence and follow-up data are also included.

reaction analysis on the validation set 
samples confirmed a significant as-
sociation expression of four of five of 
these lncRNAs (RP11–278 L15.2–001, 
LINC00511–009, HOTAIR, AC004231.2–
001; P , .05) with the ERF score in the 
independent validation set (hypergeo-
metric distribution: 80% observed vs , 
1% expected by chance alone; P = 1.76 
3 1024), thus confirming the association 
of the ERF score with its predicted ln-
cRNA expression correlates. We again 
observed that the ERF score was directly 

correlated with lncRNA HOTAIR expres-
sion (P = .025), and binary ERF score 
(P = .047) in the independent validation 
set, confirming the relationship between 
this powerful regulator of metastasis in 
patients with breast cancer and the ERF 
score. The overall molecular landscape of 
the ERF score is presented in Figure 4.

Functional Investigation of the Validated 
LncRNAs
Finally, in an effort to characterize 
our validated lncRNAs associated with 
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Discussion

In this radiogenomic study of breast 
cancer, we integrated DCE MR imaging 
with lncRNA profiling to identify radi-
ogenomic biomarkers of early breast 
cancer metastasis by using automated 
quantitative feature extraction, next-
generation tumor RNA sequencing, and 
quantitative polymerase chain reaction 
validation. A feature called the ERF 
score was identified, and patients with 
high ERF scores were found to expe-
rience metastasis earlier than patients 
with low ERF scores. In addition, RNA 
sequencing analysis of 4468 lncRNAs 
allowed identification of eight lncRNAs 
that were strongly associated with the 
ERF phenotype. These included several 
unknown lncRNAs and known lncRNAs 
including HOTAIR, a known driver of 
metastasis (4). The ERF score radioge-
nomic associations were validated in an 
independent dataset, confirming their 
association with MFS and with expres-
sion of lncRNAs by means of quantita-
tive polymerase chain reaction. Thus, 
these findings begin to reveal an initial 
portrait of the multiscale relationships 
between quantitative DCE MR imag-
ing phenotypes, early metastasis, and 
lncRNA expression observed at high 
resolution RNA sequencing, which sug-
gests that the approach is both feasible 
and scalable.

As with other imaging modalities, 
there is a need for automated com-
puter–vision and quantitative feature–
extraction algorithms in breast DCE 
MR imaging. Although authors of previ-
ous work, to our knowledge, have relied 
on detailed image object identification 
followed by expert-guided segmenta-
tion and feature analysis, the analysis 
system used in our study is almost 
completely automated (29,30). This in-
creases objectivity, thereby rendering 
spatially and temporally dynamic nonin-
vasive image phenotyping more akin to 
molecular profiling tools. Furthermore, 
we used a relatively focused, yet diverse 
image feature library that included sta-
tistical, morphologic, and textural fea-
tures as well as spatiotemporally based 
image features (31–33). The statistical 
and textural measures were found to be 

uninformative, but the spatiotemporal-
type trait, ERF, was both strongly asso-
ciated with MFS and biologically con-
cordant with known lncRNA regulators 
of aggressive tumors. Although further 
work is currently underway to ensure 
reproducibility of our approach, these 
initial results are promising.

We identified the ERF phenotype 
to be significantly associated with the 
lncRNA HOTAIR, which has been impli-
cated in breast cancer metastasis (4). 
Data suggest that HOTAIR functions 
by transducing higher-order spatial in-
formation in cells by mediating epige-
netic silencing in trans through physi-
cal recruitment of polycomb repressive 
complex 2 (PCR2) and subsequent 
targeting of tumor suppressor genes 
(34). Thus, HOTAIR appears to effect 
cellular reprogramming by reimposing 
the chromatin state to one associated 
with dedifferentiated, migratory, and 
invasive fibroblasts, consistent with its 
association with metastasis (4). Fur-
thermore, HOTAIR also is known to 
increase expression of several angio-
genic genes such as vascular endothelial 
growth factor (35). Given the contrast-
enhanced phenotypic characteristics of 
the high-ERF trait and its strong associ-
ation with early metastasis found in our 
study, these findings appear to be com-
patible with known effects of HOTAIR. 
Clearly, further work is necessary to 
better understand the potential mech-
anistic relationships between HOTAIR 
expression and the ERF phenotype.

Despite our efforts to minimize bi-
ases in our study through the use of 
computer-aided lesion identification 
and quantitative feature extraction, a 
uniform patient population, standard-
ized imaging protocols, and indepen-
dent training and validation sets, care 
must be taken not to overgeneralize 
our results. Limitations include the 
retrospective, single-institution na-
ture of the study. Further validation 
in a larger cohort of prospectively 
recruited patients of heterogeneous 
ethnic backgrounds from different in-
stitutions is required and will ensure 
robustness. Further studies also will 
be required for confirmation of any 
mechanistic relationships between the 

associations of imaging features with 
the identified lncRNAs. Although fu-
ture radiogenomic studies of breast 
cancer could benefit from the leverag-
ing of existing large public datasets 
such as the Cancer Genome Atlas 
and the Cancer Imaging Archive, they 
currently are limited by nonstandard-
ized image acquisition protocols, small 
sample size, and immature outcomes 
data (8). Nonetheless, we expect that, 
with time, such resources will become 
an invaluable resource for future radi-
ogenomic analyses of breast cancer.

The growing number of genomic, 
imaging, and clinical biomarkers iden-
tified in patients with breast cancer 
has created the need for integrative 
biomarkers, biomarkers that link mul-
tiple types of data and measurements. 
Although it is beyond the scope of this 
analysis, this radiophenotypic map of 
breast cancer can serve as a fundamen-
tal starting point with which to build 
even more in-depth hierarchical biologic 
models that reflect how the ERF phe-
notype integrates with the network of 
other molecular species such as mRNA 
and microRNA expression, DNA meth-
ylation, and DNA copy number and 
sequence variation. These newly iden-
tified radiogenomic associations set the 
stage for future studies to elucidate the 
roles and functions of new, previously 
uncharacterized lncRNAs and other ge-
nomic elements and their relationship 
to systems-level image phenotypes in a 
multiscale context.

Disclosures of Conflicts of Interest: S.Y. dis-
closed no relevant relationships. W.H. disclosed 
no relevant relationships. Y.K. disclosed no rel-
evant relationships. L.D. disclosed no relevant 
relationships. N.J. disclosed no relevant rela-
tionships. D.H. disclosed no relevant relation-
ships. J.H.K. disclosed no relevant relationships. 
M.D.K. disclosed no relevant relationships.

References
 1. Rinn JL, Chang HY. Genome regulation by 

long noncoding RNAs. Annu Rev Biochem 
2012;81:145–166. 

 2. Mercer TR, Dinger ME, Mattick JS. Long 
non-coding RNAs: insights into functions. 
Nat Rev Genet 2009;10(3):155–159. 

 3. Esteller M. Non-coding RNAs in human 
disease. Nat Rev Genet 2011;12(12):861–874. 



392 radiology.rsna.org n Radiology: Volume 275: Number 2—May 2015

BREAST IMAGING: Radiogenomic Biomarker of Breast Cancer Metastasis Yamamoto et al

 4. Gupta RA, Shah N, Wang KC, et al. Long 
non-coding RNA HOTAIR reprograms 
chromatin state to promote cancer metas-
tasis. Nature 2010;464(7291):1071–1076. 

 5. Spizzo R, Almeida MI, Colombatti A, Calin 
GA. Long non-coding RNAs and cancer: a 
new frontier of translational research? On-
cogene 2012;31(43):4577–4587. 

 6. Brunner AL, Beck AH, Edris B, et al. Tran-
scriptional profiling of long non-coding 
RNAs and novel transcribed regions across 
a diverse panel of archived human cancers. 
Genome Biol 2012;13(8):R75. 

 7. O’Connor JP, Jackson A, Parker GJ, Jayson 
GC. DCE-MRI biomarkers in the clinical 
evaluation of antiangiogenic and vascular 
disrupting agents. Br J Cancer 2007;96(2): 
189–195. 

 8. Cancer Genome Atlas Network. Compre-
hensive molecular portraits of human breast 
tumours. Nature 2012;490(7418):61–70. 

 9. Metzker ML. Sequencing technologies - the 
next generation. Nat Rev Genet 2010;11(1):31–
46. 

 10. Nie K, Chen JH, Yu HJ, Chu Y, Nalcioglu 
O, Su MY. Quantitative analysis of lesion 
morphology and texture features for diag-
nostic prediction in breast MRI. Acad Ra-
diol 2008;15(12):1513–1525. 

 11. Chen W, Giger ML, Newstead GM, et al. Com-
puterized assessment of breast lesion malig-
nancy using DCE-MRI robustness study on 
two independent clinical datasets from two 
manufacturers. Acad Radiol 2010;17(7):822– 
829. 

 12. Diehn M, Nardini C, Wang DS, et al. Identifi-
cation of noninvasive imaging surrogates for 
brain tumor gene-expression modules. Proc 
Natl Acad Sci U S A 2008;105(13):5213–
5218. 

 13. Jamshidi N, Diehn M, Bredel M, Kuo MD. 
Illuminating radiogenomic characteristics of 
glioblastoma multiforme through integration 
of MR imaging, messenger RNA expression, 
and DNA copy number variation. Radiology 
2014;270(1):1–2. 

 14. Kuo MD, Gollub J, Sirlin CB, Ooi C, Chen 
X. Radiogenomic analysis to identify im-
aging phenotypes associated with drug re-

sponse gene expression programs in hepa-
tocellular carcinoma. J Vasc Interv Radiol 
2007;18(7):821–831. 

 15. Kuo MD, Jamshidi N. Behind the numbers: 
Decoding molecular phenotypes with radi-
ogenomics—guiding principles and technical 
considerations. Radiology 2014;270(2):320–
325. 

 16. Yamamoto S, Korn RL, Oklu R, et al. ALK 
molecular phenotype in non-small cell lung 
cancer: CT radiogenomic characterization. 
Radiology 2014;272(2):568–576. 

 17. Yamamoto S, Maki DD, Korn RL, Kuo 
MD. Radiogenomic analysis of breast can-
cer using MRI: a preliminary study to de-
fine the landscape. AJR Am J Roentgenol 
2012;199(3):654–663. 

 18. Segal E, Sirlin CB, Ooi C, et al. Decoding 
global gene expression programs in liver 
cancer by noninvasive imaging. Nat Biotech-
nol 2007;25(6):675–680. 

 19. Delhomme N, Padioleau I, Furlong EE, 
Steinmetz LM. easyRNASeq: a bioconduc-
tor package for processing RNA-Seq data. 
Bioinformatics 2012;28(19):2532–2533. 

 20. Nygard AB, Jørgensen CB, Cirera S, Fred-
holm M. Selection of reference genes for gene 
expression studies in pig tissues using SYBR 
green qPCR. BMC Mol Biol 2007;8(1):67. 

 21. Lee SH, Kim JH, Cho N, et al. Multilevel 
analysis of spatiotemporal association fea-
tures for differentiation of tumor enhance-
ment patterns in breast DCE-MRI. Med 
Phys 2010;37(8):3940–3956. 

 22. Hong BW. Joint estimation of shape and de-
formation for the detection of lesions in dy-
namic contrast-enhanced breast MRI. Phys 
Med Biol 2013;58(21):7757–7775. 

 23. Fitzpatrick JM, Sonka M. Handbook of 
Medical Imaging, Vol 2: Medical Image Pro-
cessing and Analysis. Bellingham, WA: SPIE 
Press, 2000.

 24. Hu MK. Visual pattern recognition by mo-
ment invariants. IRE Trans Inf Theory 
1962;8(2):179–187. 

 25. Degani H, Gusis V, Weinstein D, Fields S, 
Strano S. Mapping pathophysiological fea-
tures of breast tumors by MRI at high spatial 
resolution. Nat Med 1997;3(7):780–782. 

 26. Furman-Haran E, Feinberg MS, Badikhi D, 
Eyal E, Zehavi T, Degani H. Standardization 
of radiological evaluation of dynamic con-
trast enhanced MRI: application in breast 
cancer diagnosis. Technol Cancer Res Treat 
2014;13(5):445–454. 

 27. Anders S, Huber W. Differential expression 
analysis for sequence count data. Genome 
Biol 2010;11(10):R106. 

 28. Park C, Yu N, Choi I, Kim W, Lee S. ln-
cRNAtor: a comprehensive resource for 
functional investigation of long non-coding 
RNAs. Bioinformatics 2014;30(17):2480–
2485. 

 29. Yankeelov TE, Lepage M, Chakravarthy A, 
et al. Integration of quantitative DCE-MRI 
and ADC mapping to monitor treatment 
response in human breast cancer: initial re-
sults. Magn Reson Imaging 2007;25(1):1–13. 

 30. Park SH, Moon WK, Cho N, et al. Diffu-
sion-weighted MR imaging: pretreatment 
prediction of response to neoadjuvant che-
motherapy in patients with breast cancer. 
Radiology 2010;257(1):56–63. 

 31. Woods BJ, Clymer BD, Kurc T, et al. 
Malignant-lesion segmentation using 4D 
co-occurrence texture analysis applied to 
dynamic contrast-enhanced magnetic res-
onance breast image data. J Magn Reson 
Imaging 2007;25(3):495–501. 

 32. Holli K, Lääperi AL, Harrison L, et al. Char-
acterization of breast cancer types by tex-
ture analysis of magnetic resonance images. 
Acad Radiol 2010;17(2):135–141. 

 33. Agner SC, Rosen MA, Englander S, et al. 
Computerized image analysis for identifying 
triple-negative breast cancers and differen-
tiating them from other molecular subtypes 
of breast cancer on dynamic contrast-en-
hanced MR images: a feasibility study. Radi-
ology 2014;272(1):91–99. 

 34. Tsai MC, Manor O, Wan Y, et al. Long 
noncoding RNA as modular scaffold of 
histone modification complexes. Science 
2010;329(5992):689–693. 

 35. Geng YJ, Xie SL, Li Q, Ma J, Wang GY. 
Large intervening non-coding RNA HOTAIR 
is associated with hepatocellular carcinoma 
progression. J Int Med Res 2011;39(6):2119–
2128.


