

Standards	;			DAL
Phase	Recommended Parameters	Measure of Image Quality	Late Arterial	Late Arterial
Late Arterial Phase	 3-5 mL/s x 30s^{5,6,12,14} 18-21 s post trigger 	 Peak aortic attenuation 250- 300 HU^{13,23,24,29} Avid portal vein^{13,25,30} Minimal liver enhancement (20-30 HU^{23-25,30}) 		Portal Vanous
Portal Venous Phase	 Weight based contrast Iodine concentration 500-750 mg l/kg^{6,10,12-} 14,24-26,28 30s post HAP (70-80s total delay) 	 Liver enhancement ≥ 50 HU^{10,13,25} Avid portal & hepatic veins^{13,25} 	Portal Venous	
Delayed Phase	• 3-5 min delay	 Maintain liver enhancement (close to 50 HU^{25,31}) 	Delayed	Delayed
RSNA 2016			ACR LI-	RADS & OPTN/UNOS

Methods: Patient Selection

- As a quality assurance audit, Research Ethics Board approval waived
- Conducted at a single academic teaching hospital with subspecialty hepatobiliary surgery and liver transplantation service
- Patient selection:
 - FIRST CYCLE "Old Protocol" Group: January 2015 September 2015 all liver CT with imaging features of cirrhosis (n = 49)
 - SECOND CYCLE "Modified Protocol" Group: October 2015 December 2015 all liver CT with imaging features of cirrhosis (n = 31)
 - Only patients with documented liver cirrhosis or imaging signs of cirrhosis (parenchymal nodularity, lobar redistribution, widened fissures) included
 - Total of 4 studies were excluded due to pseudocirrhosis (n=2) or an unmeasurable, thrombosed portal vein (n=2)
- Patient age, gender, and weight obtained from electronic chart, iodine concentration calculated
- Clinical cirrhosis score (Model for End Stage Liver Disease, MELD) calculated from serum bilirubin, creatinine, and international normalized ratio

RSNA 2016

DAL

DAL

Methods: Imaging Analysis

• Imaging Analysis

- 4 phases: unenhanced (C-), late/hepatic arterial (HAP), portal venous (PVP), and equilibrium (EP)
- All 4 phases analyzed, ROI's taken (KE):
 - Aorta at celiac axis
 - Main portal vein at porta hepatis
 - Liver parenchyma average of 4 ROI's
 - Hepatic veins average of all 3
- Peak attenuation of vessels recorded
- Enhancement of parenchyma calculated by subtracting unenhanced value from enhanced value

RSNA 2016

Methods: Imaging Criteria & Statistics

Criteria	Phase/Standard	References
Liver enhancement	PVP ≥50 HU	10,13,25
Iodine concentration	≥500 mg I/kg	6,10,12-14,24-26,28
Peak aortic attenuation	HAP (≥250 HU)	13,23,24,29
Peak portal vein attenuation	HAP ("avid")	13,25,30
Liver enhancement	HAP (20-30 HU)	23-25,30
Peak hepatic vein attenuation	PVP ("avid")	13,25
Liver enhancement	EP (close to 50 HU)	25,31

- Primary standards for image quality:
 - Liver enhancement in PVP ≥50 HU
 - Iodine concentration ≥500 mg I/kg
- Statistical Analysis
 - Student T test to compare means of continuous variables
 - Patient age, weight, MELD score, enhancement values, iodine concentrations, and contrast to noise ratio (CNR)
 - Fisher's exact test used to compare number of males & females, number of suboptimal studies in each group

	Results: Old Protocol				
Criteria		Old Protocol	Suboptimal Studies	Phase/Standard	References
Liver enhancement (PVP)	51 ± 16 (n = 38)	21/38 (<50 HU)	≥50 HU	10,13,25
lodine concentration	(mg I/kg)	456 ±112 (248-822)	9/11 (<500 mg l/kg)	≥500 mg I/kg	6,10,12-14,24-26,28
Peak aorta (HAP)		242 ± 92		≥250 HU	13,23,24,29
Peak portal vein (HAI	P)	112 ± 41		"Avid"	13,25,30
Liver enhancement (HAP)	21± 12		20-30 HU	23-25,30
Peak hepatic vein (PV	/P)	144 ± 37		"Avid"	13,25
Liver enhancement (EP)		41 ± 15 (n = 27)		Close to 50 HU	25,31
	**TOT	AL SUBOPTIN MODIFIED • Weight I (1.7 mL/ • Faster in • Late arte	AL STUDIES: PROTOCOL: pased contrast d /kg) jection rate (5 m erial phase (20 s)	30/49 (57%)* ⁺ ose nL/s)	*

Results: Modi	fied Pro	tocc	bl			
CLINICAL PARAMETERS		D = 40	DPROTOCOL	MODIFIE	D PROTOCO	_ p value
Mean age in years (range)		62 5 +9	(37-86)	62 9 +7 (51-8	2)	0.85
Gender		02.5 ±5	(37 88)	02.5 17 (51 0	,	0.05
Male (%)		33 (67)		23 (74)		0.62
Female (%)		16 (33)		8 (26)		
Mean Weight in kg (range)	86 ±21 (45-149)	86 ±22 (47 -	136)	0.94
Criteria	OLD PROTO	COL	MODIFIED P	ROTOCOL	p < 0.05	Phase/Standar
Criteria Liver enhancement (PVP)	OLD PROTO 51 ± 16 (n = 38)	COL	MODIFIED P 61 ± 15 (n = 17)	ROTOCOL	p < 0.05 ✓	Phase/Standar ≥50 HU
Criteria Liver enhancement (PVP) Iodine concentration (mg I/kg)	OLD PROTO 51 ± 16 (n = 38) 456 ±112 (248-82	COL (2)	MODIFIED P 61 ± 15 (n = 17) 595 ±88 (408-80)	ROTOCOL 7)	p < 0.05 ✓ ✓	Phase/Standar ≥50 HU ≥500 mg I/kg
Criteria Liver enhancement (PVP) lodine concentration (mg I/kg) Peak aorta (HAP)	OLD PROTO 51 ± 16 (n = 38) 456 ±112 (248-82 242 ± 92	COL (2)	MODIFIED P 61 ± 15 (n = 17) 595 ±88 (408-803 317 ± 98	ROTOCOL 7)	p < 0.05 ✓ ✓	Phase/Standar ≥50 HU ≥500 mg I/kg ≥250 HU
Criteria Liver enhancement (PVP) lodine concentration (mg I/kg) Peak aorta (HAP) Peak portal vein (HAP)	OLD PROTO 51 ± 16 (n = 38) 456 ±112 (248-82 242 ± 92 112 ± 41	COL 2)	MODIFIED P 61 ± 15 (n = 17) 595 ±88 (408-803 317 ± 98 180 ± 70	ROTOCOL 7)	p < 0.05 ✓ ✓ ✓ ✓	Phase/Standar ≥50 HU ≥500 mg I/kg ≥250 HU "Avid"
Criteria Liver enhancement (PVP) lodine concentration (mg I/kg) Peak aorta (HAP) Peak portal vein (HAP) Liver enhancement (HAP)	OLD PROTO 51 ± 16 (n = 38) 456 ±112 (248-82 242 ± 92 112 ± 41 21 ± 12 (n = 38)	COL :2)	MODIFIED P 61 ± 15 (n = 17) 595 ±88 (408-807 317 ± 98 180 ± 70 31 ± 15 (n = 17)	ROTOCOL 7)	p < 0.05 ✓ ✓ ✓ ✓ ✓	Phase/Standar ≥50 HU ≥500 mg I/kg ≥250 HU "Avid" 20-30 HU
Criteria Liver enhancement (PVP) lodine concentration (mg I/kg) Peak aorta (HAP) Peak portal vein (HAP) Liver enhancement (HAP) Peak hepatic vein (PVP)	OLD PROTO 51 ± 16 (n = 38) 456 ±112 (248-82) 242 ± 92 112 ± 41 21 ± 12 (n = 38) 144 ± 37	COL (2)	MODIFIED P 61±15 (n = 17) 595±88 (408-80) 317±98 180±70 31±15 (n = 17) 161±32	ROTOCOL 7)	p < 0.05	Phase/Standar ≥50 HU ≥500 mg I/kg ≥250 HU "Avid" 20-30 HU "Avid"

MEAN AORTIC ATTENUATION	Old Protocol	Modified Protocol	p value
Arterial phase	242 ± 92	317 ± 98	0.0008
Portal venous phase	131 ± 31	143 ± 25	0.08
Delayed phase	100 ± 23 (n = 38)	116 ± 19	0.003

MEAN PORTAL VEIN ATTENUATION	Old Protocol	Modified Protocol	p value
Arterial phase	112 ± 41	180 ± 70	<0.0001
Portal venous phase	144 ± 37	161 ± 32	0.04
Delayed phase	102 ± 22 (n = 38)	117 ± 23	0.005

MEAN HEPATIC ATTENUATION	Old Protocol	Modified Protocol	p value
Unenhanced phase	46 ± 8 (n = 38)	46 ± 7 (n = 17)	0.95
Arterial phase	68 ± 13 (n = 49)	79 ± 14 (n = 31)	0.0006
Portal venous phase	95 ± 18 (n = 49)	108 ± 16 (n = 31)	0.002
Delayed phase	83 ± 16 (n = 38)	94 ± 13 (n = 31)	0.003

Discussion: Addition to Literature

T

- To our knowledge, this is the first study to examine weight-based contrast dosing in a North American population of cirrhotic patients
- Majority of previous studies conducted in Asia, evaluated patients much smaller than the average North American
- The heaviest patients in these studies corresponded to the average weight of patients in our study

Study	Location	Number of Patients	Average Weight (kg)	Weight Range (kg)	Exclusion
Heiken et al., 1995 (Radiology)	Washington University	200	73	45-91	>95kg, cirrhosis
Yamashita et al., 2000 (Radiology)	Japan (3 university hospitals)	221	57	19-88	NO
Awai & Hori, 2003 (Eur Radiol)	Osaka, Japan	92	60	44-76	NO
Awai et al., 2004 (Radiology)	Osaka, Japan	199	57	35-83	NO
Sultana et al., 2007 (Radiology)	Kumamoto, Japan	192	60	34-81	NO
Kondo et al., 2008 (Radiology)	Gifu, Japan	161	56	37-75	>75kg
Yanaga et al., 2008 (AJR)	Kumamoto, Japan	135	59	34-85	NO
Kondo et al., 2009 (Radiology)	Gifu, Japan	120	52	30-80	cirrhosis
Li et al., 2010 (J Comput Assist Tomogr)	Emory University	77	79	50-112	NO
Fujigai et al., 2012 (Eur J Radiol)	Osaka, Japan	56	59	40-77	NO
Ichikawa et al., 2013 (Acad Radiol)	Japan (77 hospitals)	348	58	40-80	NO
Kidoh et al., 2013 (J Comput Assist Tomogr)	Kumamoto, Japan	100	55	27-88	NO
Kondo et al., 2013 (Eur Radiol)	Gifu, Japan	103	55	34-82	NO
Awai et al., 2015 (Radiology)	Japan (31 hospitals)	1288	58	29-110	NO
CURRENT STUDY	Halifax, NS, Canada	80	86	45-149	NO

Discussion: Contrast Media Pharmacokinetics

- Arterial enhancement is proportional to iodine administration rate
 - Increasing injection rate from 3 mL/s to 5 mL/s improved peak aortic attenuation
- Delaying the timing of the arterial phase resulted in increased opacification of the portal vein without changing the opacification of the hepatic veins
 - Corresponds with the ACR Li-RADS definition of a proper late arterial phase
- Hepatic enhancement is primarily determined by the volume of contrast administered
 - Main physiologic parameter affecting liver enhancement is body weight
 - By adjusting the dose of contrast media to patient weight, liver enhancement in the portal venous phase significantly improved and resulted in fewer suboptimal studies
 - All 7 suboptimal studies in the modified protocol occurred in patients weighing > 100kg who received the maximum contrast dose (150 mL) and therefore received a lower iodine concentration

RSNA 2016

References 5-7,10-21,25-28

Y

T

Discussion: Cost Issues

• Increased cost of IV contrast?

- The modified protocol costs \$5.60 (CDN) more per examination than the old protocol
- At least partly offset by fewer repeat examinations due to inadequate/suboptimal studies, which decreased from 57% with the old protocol to 23% in the modified protocol
- Decreased use of alternative, more expensive modalities such as MRI, which costs \$50.97 (CDN) more than the modified protocol CT per examination
- Better for patient care HCC needs early detection for chance of survival

SUPPLIES	OLD CT	MODIFIED CT	MRI
Contrast (mL)	100 @ \$0.16/ml	135 @ \$0.16/ml	12 @ \$4.30/ml
TOTAL CONTRAST (CDN\$)	16	21.60	51.60
Equipment (needle, syringe, etc.)	9.31	9.31	9.31
Technologist	30 mins (\$20.97)	30 mins (\$20.97)	60 mins (\$41.94)
Administrative costs	14.63	14.63	14.63
TOTAL COST (CDN\$)	60.91	66.51	117.48

RSNA 2016

Conclusions

- Modified protocol improved image quality in ALL phases
 - Increased injection rate = improved aortic attenuation
 - Late HAP = increased PV attenuation
 - Increased contrast volume = improved hepatic enhancement in both the PVP AND EP
- Number of suboptimal studies decreased from 57% to 23%
 - ALL patients in suboptimal group weighed >100kg alternative strategy with MRI?
- Weight based contrast dosing, faster injection rate, and late HAP timing result in better quality studies in cirrhotic patients
 - Implication = better/earlier detection of HCC
- Modified protocol being implemented across region

RSNA 2016

R	leferences 🖁
1.	Mittal S, El-Serag HB. Epidemiology of HCC: Consider the population. J Clin Gastroenterol 2013;47:2-6.
	Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin 2011;61(2):69–90.
	Bruk J, Sherman M. Management of hepatocellular carcinoma: an update. Hepatology 2011;53(3),1020-1022.
	McEvoy SH, McCarthy CJ, Lavelle LP, et al. Hepatocellular carcinoma: an illustrated guide to systematic radiologic diagnosis and staging according to guidelines of the American association for the study of liver diseases. Radiographics 2013;33:1653-1668.
	Wald C, Russo MW, Heimbach JK, et al. New OPTN/UNOS policy for liver transplant allocation: Standardization of liver imaging, diagnosis, classification, and reporting of hepatocellular carcinoma. Radiology 2013;266:376-382.
	Bae KT. Intravenous contrast medium administration and scan timing at CT: Considerations and approaches, Radiology 2010;256(1):32-61.
	Koiwahara G, Tsuda T, Matsuda M, et al. Different enhancement of the hepatic parenchyma in dynamic CT for patients with normal liver and chronic liver diseases and with the dose of contrast medium based or body surface area. Jpn J Radiol 2015;33:194–200.
	Van Beers BE, Leconte I, Materne R, Smith AM, Jamart J, Horsmans Y. Hepatic perfusion parameters in chronic liver disease: Dynamic CT measurements correlated with disease severity. AIR 2001;176:667-673.
	Zissen MH, Wang ZJ, Yee J, et al. Contrast-enhanced CT quantification of the hepatic fractional extracellular space: correlation with diffuse liver disease severity. AIR Am J Roentgenol. 2013;201:1204–10.
	Heiken IP, Brink JA, McClennan BL, et al. Dynamic incremental CT: effect of volume and concentration of contrast material and patient weight on hepatic enhancement. Radiology 1995; 195:353-357.
	Kormano M, Partanen K, Soimakallio S, Kivimaki T. Dynamic contrast enhancement of the upper abdomen: Effect of contrast medium and body weight. Invest Radiol 1983;18(4):364-367.
	Fleischmann D, Kamaya A. Optimal vascular and parenchymal contrast enhancement: The current state of the art, Radiol Clin N Am 2009:47;13–26.
	Yamashita Y, Komohara Y, Takahashi M, et al. Abdominal helical CT: Evaluation of optimal doses of intravenous contrast material—A prospective randomized study, Radiology 2000; 216:718–723.
	Ichikawa T, Erturk SM, Araki T. Multiphasic contrast-enhanced multi detector row CT of liver: contrast-enhancement theory and practical scan protocol with a combination of fixed injection duration and patients body-weight-tailored dose of contrast material. Eur J Radiol 2006;58(2):165–76.
	Ho LM, Nelson RC, Delong DM. Determining contrast medium dose and rate on basis of lean body weight: does this strategy improve patient-to-patient uniformity of hepatic enhancement during multi-detector row CT? Radiology 2007;243:431-437.
	Kondo H, Kanematsu M, Goshima S, et al. Abdominal Multidetector CT in patients with varying body fat percentages: estimation of optimal contrast material dose, Radiology 2008;249(3):872-877.
	Kondo H, Kanematsu M, Goshima S, et al. Body size indexes for optimizing iodine dose for aortic and hepatic enhancement at multidetector CT: Comparison of total body weight, lean body weight, and blood volume. Radiology 2010;254(1):163-169.
	Kidoh M, Nakaura T, Oda S, et al. Contrast enhancement during hepatic computed tomography: effect of total body weight, height, body mass index, blood volume, lean body weight, and body surface area. J Comput Assist Tomogr 2013;37:159-164.
	Kondo H, Kanematsu M, Goshima S, et al. Body size indices to determine iodine mass with contrast-enhanced multi-detector computed tomography of the upper abdomen: does body surface area outperform total body weight or lean body weight? Eur Radiol 2013;23:1855–1861.
	Awai K, et al. The optimal body size index with which to determine iodine dose for hepatic dynamic CT: A prospective multicenter study. Radiology 2016 (in print).

9

References

Awai K, Hori S. Effect of contrast injection protocol with dose tailored to patient weight and fixed injection duration on aortic and hepatic enhancement at multi detector-row helical CT. Eur Radiol
2002-12/01-2155-50

- Awai K, Hiraishi K, Hori S. Effect of contrast material injection duration and rate on aortic peak time and peak enhancement at dynamic CT involving injection protocol with dose tailored to patient weight. Radiology 2004;230(1):142-50.
- 23. Sultana S, Awai K, Nakayama Y, et al. Hypervascular hepatocellular carcinomas: bolus tracking with a 40-detector CT scanner to time arterial phase imaging. Radiology 2007; 243:140-147.
- 24. Yanaga Y, Awai K, Nakaura T, et al. Optimal contrast dose for depiction of hypervascular hepatocellular carcinoma at dynamic CT using 64 MDCT. AJR 2008; 190:1003–1009.
- 5. Fujigai T, Kumano S, Okada M, et al. Optimal dose of contrast medium for depiction of hypervascular HCC on dynamic MDCT. European Journal of Radiology 2012:81,2978–2983.
- Ichikawa T, Okada M, Kondo H, et al. Multiphasic contrast-enhanced multidetector row computed tomography imaging of liver for assessing hypervascular hepatocellular carcinoma: multicenter prospective stu in 77 general hospitals in Japan. Acad Radiol 2013; 20:1130-1136.
- P. Foley DW et al. Multiphase hepatic CT with a multirow detector CT scanner. AJR 2000;175:679-685.
- Rengo M, Bellini D, De Cecco CN, Osimani M, Vecchietti F, Caruso D, Maceroni MM, Lucchesi P, Iafrate F, Paolantonio P, Ferrari R, Laghi A. The optimal contrast media policy in CT of the liver. Part I: Technical notes. Acta Radiologica 2011;52:467-472.

9 - Yamasuchi I Kidwa F. Suzuki I. Kimura H. Ontimizing scan timing of hanatic arterial nhase hunhusiolneic nharmarokinetic analysis in holus tracking technique hu multi-detector row computed tomography G

30. Murakami T, Kim T, Takamura M, et al. Hypervascular hepatocellular carcinoma: detection with double arterial phase multi-detector row helical CT. Radiology 2001;218:763-767.

- 31. Monzawa 5, Ichikawa T, Nakajima H, et al. Dynamic CT for detecting small hepatocellular carcinoma: usefulness of delayed phase imaging. AJR 2007:188:147-153.
- 32. Vignaux O, Legmann P, Coste J, et al. Cirrhotic liver enhancement on dual-phase helical CT: comparison with noncirrhotic livers in 146 patients. AJR 1999;173:1193–1197.
- Nakaura T, Nakamura S, Maruyama N, Funama Y, Awai K, Harada K, Uemura S, Yamashita Y. Low contrast agent and radiation dose protocol for hepatic dynamic CT of thin adults at 256-detector row CT: effect of low tube voltage and hybrid iterative reconstruction algorithm on image quality. Radiology 2012;264(2):445-454.
- Goshima S, Kanematsu M, Noda Y, Kondo H, Watanabe H, Kawaia H, Kawaia N, Tanahashi Y, Bae KT. Determination of optimal intravenous contrast agent iodine dose for the detection of liver metastasis at 80-CT. Eur Radio 2014;24:1833–1859.
- 35. Goshima S. Kanematsu M. Noda Y. Kawai N. Kawada H. Ono H. Bae KT. Minimally required iodine dose for the detection of hypervascular hepatocellular carcinoma on 80 kVp CT. AIR 2016:206:518-525.
- 36 Mileto & Ramirez-Giraldo IC Marin D. Alfaro-Cordoba M. Fusemann CD. Scribano F. Blandino A. Mazziotti S. Ascenti G. Nonlinear imaee blendine for dual-energy MDCT of the abdomen: can imaee nualit
- 7. Noda Y, Kanematsua M, Goshima S, Kondo H, Watanabe H, Kawada H, Kawai N, Tanahashi Y, Miyoshi TRT, Bae KT. Reducing iodine load in hepatic CT for patients with chronic liver disease with a combination o
- Guimarães LS, Fletcher JG, Harmsen WS, Yu L, Siddiki H, Melton Z, Huprich JE, Hough D, Hartman R, McCollough CH. Appropriate patient selection at abdominal dual-energy CT using 80 kv: relationsh patient size, image noise, and image quality. Radiology 2010;257(3):732-742.
- Marin D, Nelson RC, Samei E, Paulson EK, Ho LM, Boll DT, DeLong DM, Yoshizumi TT, Schindera ST. Hypervascular liver tumors: Low tube voltage, high tube current multidetector CT during la phase for detection—Initial clinical experience, Radiology 2009;251(3):771-779.