HIGH FIDELITY CONTRAST REACTION SIMULATION TRAINING

A Single Department's Experience in Training all Faculty, Fellows, and Residents to Improve Patient Care and Satisfy PQI requirements

Yale School of Medicine, Department of Radiology and Biomedical Imaging

D Asch, MD; KE Pfeifer, MD; J Cavallo, MD; L Kappus, MEd; J Arango, MPH; J Kirsch, MD; J Pahade, MD

BACKGROUND & PURPOSE

- Contrast reactions are one of the few medical emergencies that radiologists must be prepared to manage
 - Severe reactions are relatively rare (0.005-0.01% of all injections)
 - Most radiologists have limited experience treating these patients
 - Knowledge of treatment algorithms is poor
 - Significant risk in event of a reaction potentially fatal patient outcomes

11 condense all the prior studies stuff into one slide Jay Pahade, 10/21/2015

BACKGROUND & PURPOSE

- Prior studies have shown that we are not prepared...
 - Most recent single center study of radiology attending physicians, fellows, residents and found¹:
 - 50% correctly identified the proper dose of IM epinephrine for anaphylaxis
 - 29% knew the proper dose/rate of administration of IV epinephrine for anaphylaxis
 - 2009 survey of radiologists²: 91% chose epinephrine as the initial drug of choice in a contrastrelated reaction.
 - 41% gave the correct administration route and dose
 - 11% knew what concentrations were available to them and what equipment was needed
 - 17% of radiologists administered potentially fatal overdoses
 - England survey³:
 - 41/284 (14%) diverse MDs knew correct epinephrine dose

```
<sup>1</sup>Nandwana, et al. AJR. 2015; 205:90-94. 10:2214/AJR.14.13884

<sup>2</sup>Lightfoot CB, Abraham RJ, Mammen T, et al. Survey of radiologists' knowledge regarding the management of severe contrast material induced allergic reactions.

Radiology 209; 25:1691–696.

<sup>3</sup>Droste et al. Anaphylaxis: lack of hospital doctors' knowledge of adrenaline (epinephrine) administration in adults could endanger patients' safety. Eur Ann Allergy Clin

Immunol. 2012;44(3):122-7
```

BACKGROUND & PURPOSE

- High-fidelity simulation has arisen as an effective model to address this issue as it allows practice of high acuity but low frequency clinical events
- Our institution implemented a department-wide quality improvement program designed to increase patient safety and radiologist education on the recognition and management of contrast reactions
- The quality improvement project was developed using the PDSA (Plan – Do – Study – Act) cycle advocated by the American Board of Radiology (ABR).

METHODS-DESIGN

- Participants:
 - · Mandatory for all radiology residents and fellows
 - Optional for faculty, but integrated into bonus eligibility to encourage completion
- Instructors:
 - Four radiology staff (3 faculty, 1 resident)
 - Completed an 8-hour course on simulation development and instruction

METHODS-TESTING

Pretest

- 20-question multiple-choice test assessing participants' knowledge of contrast reactions/management and departmental contrast policies (developed based on ACR contrast manual) <u>Test questions</u>
- 10 questions assessing participants' demographics, ACLS/BLS status, and comfort level in responding to contrast reactions using a Likert scale <u>Test Questions</u>
- Test completed prior to simulation training to allow assessment of knowledge prior to the intervention
- Posttest
 - Same test retaken at 1 month and 6 months after course to assess effectiveness of course and retention of knowledge
 - 1 month posttest was mandatory. Testing at 6 months was optional
- Testing was completed via participant-specific online links distributed by email via Qualtrics survey/testing software (Qualtrics ®, Provo, Utah).

METHODS-TRAINING

- Participants completed a 1-hour course in our institution's high-fidelity simulation lab
- Mixed groups of 8-10 participants including radiology nurse, with 2-3 people serving as "initial responders", while others watched via live video feed
- Three simulations were completed with predetermined end-points:
 - · A moderate severity contrast reaction requiring use of IM epinephrine
 - A high severity, anaphylaxis-like, contrast reaction requiring use of IV epinephrine
 - A hypoglycemic event mimicking a contrast reaction requiring blood sugar assessment and administration of an ampule of D50 IV

METHODS-SIMULATION SET UP

- Simulation room mimics our department's recovery area
- During the simulation, participants were instructed to interact with the manikin (SimMan, Laerdal Medical, Wappingers Falls, NY) as if it were an actual patient.
- Manikin capabilities/features:
 - Can receive medications
 - Displays continuous real-time vital signs (which were easily changed during scenarios)
 - May manifest wheezing, crackles, tongue/laryngeal edema, and diaphoresis
 - Technician operating the manikin able to provide verbal responses to questions asked by responders via built in speakers and could hear/see participants via live video feed.

METHODS-CONTRAST REACTION KIT

- Modeled after ACR guidelines
- 1 standard kit across entire institution, including outpatient facilities
- Key components:
 - Albuterol nebulizer and MDI
 - 100 mg Hydrocortisone
 - 50 mg Diphenhydramine
 - 1 mg Atropine
 - 10 ml (1 mg) of 1:10,000 concentration epinephrine vial/bristojet
 - 1ml (1mg) vial of 1:1000 concentration epinephrine
- Actual kit used in simulation course
 - Allows participants to interact with the kit, learn medication locations, practice how to administer meds

SIMULATIONS MODELED TO PRACTICE KEY STEPS IN CONTRAST REACTION MANAGEMENT

11 core competencies on contrast reaction management.

- # Core competency
- 1 Oxygen: proper route and dose
- 2 Management of vasovagal reaction
- 3 Avoidance of diphenhydramine hydrochloride in the hypotensive patient
- 4 Avoidance of subcutaneous epinephrine in the hypotensive patient
- 5 Alternative route of epinephrine administration if no intravenous access
- 6 Correct dosing of epinephrine via different routes of administration
- 7 Management of a contrast reaction in the pediatric patient
- 8 Recognition and management of contrast reactions in the sedated patient
- 9 Management of bronchospasm
- 10 Management of upper airway/laryngeal edema
- 11 Code team activation

Wang et al. AJR 2011; 196:1288–1295

METHODS-SCENARIO 1

- Mild Contrast reaction progressing into a moderate contrast reaction:
 - Urticaria unresponsive to diphenhydramine with development of bronchospasm with wheezing, cough, and declining oxygen saturations
- Treatment Algorithm:
 - Obtain a past medical history
 - Place patient on monitor and obtain a vital signs
 - Recognize the scenario as a contrast reaction and administer 25-50 mg of diphenhydramine IV or PO
 - After no relief and progression of symptoms to diminished oxygen saturations, administer Albuterol nebulizer and 0.3 mg epinephrine 1:1000 IM
 - Know how to, and initiate hospital's code team

METHODS-SCENARIO 2

- Hypoglycemic event:
 - Diaphoresis, slight tachycardia with normal BP, altered mental state
- Treatment Algorithm:
 - Obtain past medical history from patient/technologist
 - Place patient on monitor and obtain vital signs
 - Recognize hemodynamic stability and possible contrast reaction mimic
 - Check finger stick glucose (Value=25)
 - Administer 1 amp of D50 IV push available in kit

METHODS-SCENARIO 3

- Severe contrast reaction:
 - Tongue and laryngeal edema, wheezing/coughing, hypotension, falling oxygen saturations, tachycardia, tachypnea, and declining consciousness
- Treatment Algorithm
 - Obtain a past medical history
 - Place on monitor and obtain vital signs
 - Recognize severe/"anaphylactic" contrast reaction
 - Administer oxygen via non-rebreather for hypoxia
 - Due to hypotension administer epinephrine 1:10,000, 0.1-0.3 mg via slow IV push +/- Albuterol nebulizer
 - Know how to, and initiate hospitals code team

METHODS-DEBRIEFING

- 3 D's of debriefing
 - Diffuse- Recap, vent, elicit reactions and emotions
 - · Discover- Evaluate performance through reflection (what went well, what didn't)
 - · Deepening- Connect simulation event to clinical practice
- 5-10 minute debriefing session followed each simulation
 - Events/actions of team discussed and appropriate treatment algorithms were reviewed.
 - Crucial part of simulation- allows reflection and re-enforces appropriate response and algorithm
- Prior studies have shown effectiveness in medicine
 - 2014 study' showed statistically significant improvement pretest to posttest in performance of technical and nontechnical skills

^{*}Levett-Jones, T. and S. Lapkin, A systematic review of the effectiveness of simulation debriefing in health professional education. Nurse Educ Today, 2014. **34**(6): p. e58-63.

METHODS

- Analysis
 - Pretest, posttest (1 month after) and delayed posttest (6 months after) multiple choice test scores were compared with paired twotail t-tests, and Likert scores were compared using the Wilcoxon signed rank test.

	RESULTS	Experience Level	Pretest and Posttest N (%)	Delayed Posttest N (%)
	151 out of 161 available	First year residents (PGY2)	12 (8)	9 (9)
	participants completed the simulation with 1 faculty	Second year residents (PGY3)	14 (9)	8 (8)
	participant opting to have their results removed from data	Third year residents (PGY4)	13 (9)	4 (4)
	analysis	Fourth year residents (PGY5)	13 (9)	10 (10)
•	150 participants completed the	Fellows	24 (16)	17 (16)
	pre and posttest	Faculty 0-5 years in practice	27 (18)	23 (22)
	• 102 (68%) males	Faculty 6-10 years in practice	9 (6)	7 (7)
	• 48 (32%) females	Faculty 11-15 years in practice	9 (6)	6 (6)
	Average age = 40 years (range 27-83)	Faculty >15 years in practice	29 (19)	21 (20)
		Total	150	105

RESULTS

	Pretest	Posttest	Delayed	P-value:	P-value:	P-Value:
	Score	score	posttest	Pretest vs.	Posttest vs.	Pretest vs.
			score	posttest	delayed	delayed
					posttest	posttest
All participants (n= 150)	14.1 (70)	16.0 (80)	15.6 (78)	<0.00001*	0.01	<0.00001*
1 st year residents (n=12)	12.9 (65)	15.5 (78)	16.6 (83)	0.03*	0.12	0.012*
2 nd year residents (n=	12.7 (63)	15.9 (80)	13.9 (69)	0.001*	0.09	0.02*
14)						
3 rd year residents (n= 13)	13.7 (68)	15.5 (78)	15.0 (75)	0.003*	0.39	0.68
4 th year residents (n= 13)	14.8 (74)	16.9 (85)	14.9 (75)	0.002*	0.01*	0.54
Fellows (n= 24)	14.3 (72)	15.6 (78)	15.3 (76)	0.06	0.70	0.24
Faculty <5 years (n= 27)	14.4 (72)	16.3 (82)	16.0 (80)	0.00001*	0.13	0.0001*
Faculty 6-10 years (n= 9)	14.0 (70)	15.9 (79)	15.0 (75)	0.13	0.63	0.08
Faculty 11-15 years (n=	15.2 (76)	16.1(81)	16.0 (80)	0.30	0.61	0.17
9)						
Faculty >15 years (n=29)	14.2 (71)	16.3 (81)	16.0 (80)	<0.00001*	0.20	0.001*

Mean multiple choice test scores for all participants and by level of training. Numbers in () indicate % correct out of 20. * Indicates statistically significant results.

R	ESULTS		Pretest Score	Posttest score	Delayed posttest score	P-value: Pretest vs. posttest	P-value: Posttest vs. delayed posttest	P-Value: Pretest vs. delayed posttest
		All participants (n= 150)	14.1 (70)	16.0 (80)	15.6 (78)	<0.00001*	0.01"	<0.00001*
	Mean overall score on pretest	1 st year residents (n=12)	12.9 (65)	15.5 (78)	16.6 (83)	0.03*	0.12	0.012*
	was 14.1 / 20	2 nd year residents (n= 14)	12.7 (63)	15.9 (80)	13.9 (69)	0.001*	0.09	0.02*
	Score increased significantly to 16.0 on posttest	3 rd year residents (n= 13)	13.7 (68)	15.5 (78)	15.0 (75)	0.003*	0.39	0.68
	(p<=0.00001)	4 ^m year residents (n= 13)	14.8 (74)	16.9 (85)	14.9 (75)	0.002*	0.01*	0.54
		Fellows (n= 24)	14.3 (72)	15.6 (78)	15.3 (76)	0.06	0.70	0.24
		Faculty <5 years (n= 27)	14.4 (72)	16.3 (82)	16.0 (80)	0.00001*	0.13	0.0001*
		Faculty 6-10 years (n= 9)	14.0 (70)	15.9 (79)	15.0 (75)	0.13	0.63	0.08
		Faculty 11-15 years (n= 9)	15.2 (76)	16.1(81)	16.0 (80)	0.30	0.61	0.17
		Faculty >15 years	14.2 (71)	16.3 (81)	16.0 (80)	<0.00001*	0.20	0.001*

RESULTS

- The delayed posttest had 105 participants (69%)
- The ratio of residents, fellows, and faculty who participated in the delayed posttest (n=105) was not statistically different (p=0.93) from the pretest or posttest (n=150)
- Overall test scores increased from 14.1 presimulation to 15.6 on delayed posttest (p<0.00001)

_	Pretest	Posttest	Delayed	P-value:	P-value:	P-Value:
			posttest score	Pretest vs. posttest	Posttest vs. delayed posttest	Pretest vs. delayed posttest
All participants (n= 150)	14.1 (70)	16.0 (80)	15.6 (78)	<0.00001*	0.01*	<0.00001*
1" year residents (n=12)	12.9 (65)	15.5 (78)	16.6 (83)	0.03*	0.12	0.012*
2 nd year residents (n= 14)	12.7 (63)	15.9 (80)	13.9 (69)	0.001*	0.09	0.02*
3 ^{ra} year residents (n= 13)	13.7 (68)	15.5 (78)	15.0 (75)	0.003*	0.39	0.68
4 th year residents (n= 13)	14.8 (74)	16.9 (85)	14.9 (75)	0.002*	0.01*	0.54
Fellows (n= 24)	14.3 (72)	15.6 (78)	15.3 (76)	0.06	0.70	0.24
Faculty <5 years (n= 27)	14.4 (72)	16.3 (82)	16.0 (80)	0.00001*	0.13	0.0001*
Faculty 6-10 years (n= 9)	14.0 (70)	15.9 (79)	15.0 (75)	0.13	0.63	0.08
Faculty 11-15 years (n= 9)	15.2 (76)	16.1(81)	16.0 (80)	0.30	0.61	0.17
Faculty >15 years	14.2 (71)	16.3 (81)	16.0 (80)	<0.00001*	0.20	0.001*

RESULTS		Pretest Score	Posttest score	Delayed posttest score	P-value: Pretest vs. posttest	P-value: Posttest vs. delayed posttest	P-Value: Pretest vs. delayed posttest
Overall decrease in test scores across all	All participants (n= 150)	14.1 (70)	16.0 (80)	15.6 (78)	<0.00001*	0.01*	<0.00001*
subgroups when comparing the posttest	1 st year residents (n=12)	12.9 (65)	15.5 (78)	16.6 (83)	0.03*	0.12	0.012*
with the delayed posttest (16.0 to 15.6, p=0.01)	2 nd year residents (n= 14)	12.7 (63)	15.9 (80)	13.9 (69)	0.001*	0.09	0.02*
• By subgroup analysis,	3 ^{ra} year residents (n= 13)	13.7 (68)	15.5 (78)	15.0 (75)	0.003*	0.39	0.68
only the 4 th year residents demonstrated a	4 ^m year residents (n= 13)	14.8 (74)	16.9 (85)	14.9 (75)	0.002*	0.01*	0.54
significant decrease in test scores comparing the	Fellows (n= 24)	14.3 (72)	15.6 (78)	15.3 (76)	0.06	0.70	0.24
posttest with the delayed posttest	Faculty <5 years (n= 27)	14.4 (72)	16.3 (82)	16.0 (80)	0.00001*	0.13	0.0001*
	Faculty 6-10 years (n= 9)	14.0 (70)	15.9 (79)	15.0 (75)	0.13	0.63	0.08
	Faculty 11-15 years (n= 9)	15.2 (76)	16.1(81)	16.0 (80)	0.30	0.61	0.17
	Faculty >15 years	14.2 (71)	16.3 (81)	16.0 (80)	<0.00001*	0.20	0.001*

RESULTS

- Comfort level in managing reactions demonstrated a significant positive increase (p<0.001) when comparing the pretest to the posttest (all Likert scale questions)
- Delayed posttest overall comfort level in managing reactions remained significantly improved from pre-simulation (p<0.001) but showed a significant decline (p=0.03) compared to the posttest

	Pretest comfort level	Posttest comfort level	Delayed posttest comfort level	P value: pretest vs. posttest	P value: post vs. delayed posttest	P value: pre vs. delayed posttest
Overall comfort in managing reactions	2.9	3.7	3.5	<0.001	0.03	<0.001
Managing mild reactions	3.7	4.4	4.3	< 0.001	0.33	< 0.001
Managing moderate reactions	3.0	3.9	3.7	<0.001	0.004	<0.001
Managing severe reactions	2.4	3.4	3.1	< 0.001	0.03	< 0.001
Comfort level differentiating a contrast reaction from another medical emergency	3.1	3.9	3.9	<0.001	0.36	<0.001
Comfort level differentiating a mild from a severe reaction	3.6	4.1	4.2	<0.001	0.4	<0.001

comfortable at all and 5 being very comfortable).

RESULTS-FEEDBACK

- Simulation sessions were well received
 - 86% of participants asked for other forms of simulation within our radiology department.
 - 93% of the participants felt that the group size was adequate
 - 57% of participants felt that the simulation should be completed annually
- There was a significant increase in support of high fidelity simulation training as an
 effective learning tool for contrast reaction management after completing the
 simulation (4.0 to 4.5, p<0.001) that persisted at 6-month delayed posttest (4.0 vs.
 4.5 p<0.001)

KEYS ISSUES TO IMPLEMENT A SIMILAR PRACTICE QUALITY IMPROVEMENT PROJECT AT YOUR INSTITUTION

- Institutional access
 - · Work with your institution to gain access to simulation lab
 - These are now available at most academic centers
- Must get "buy in"
 - Support of departmental leadership is key to promote participation
- Participants
 - Train everyone
 - · Can not just limit to residents- ALL residents, fellows, faculty
 - Include ancillary staff
 - Having nursing and technologist participate is key to mimic natural environment and work on team communication skills

KEYS ISSUES TO IMPLEMENT A SIMILAR PRACTICE QUALITY IMPROVEMENT PROJECT AT YOUR INSTITUTION

Group size

- · Will vary on how many simulations you develop and size of your department
- Try to mimic what typical size is for responding to an event in your department
- We had to compromise slightly for our project due to size of our department and limited time available in our simulation lab

KEYS ISSUES TO IMPLEMENT A SIMILAR PRACTICE QUALITY IMPROVEMENT PROJECT AT YOUR INSTITUTION

- Simulation creation and content
 - · A good session imparts stress/chaos
 - · Needs to feel like real life
 - Actually administer medications
 - People may memorize a dose but having them actually draw up and give the medication is important as it is a leading source of error
 - Include mimickers of contrast reactions
 - · Important to practice normal clinical assessment and recognize adverse events
 - · Use different mimics each year

Contrast Reaction Mimics

- Hypoglycemia Acute Coronary
- Syndrome
- Seizure
- Drug (pain medication) overdose
- Nausea/Vomiting
- Stroke •
- Air Embolism

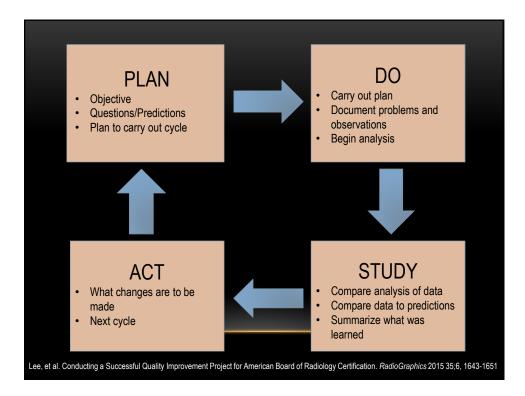
KEYS ISSUES TO IMPLEMENT A SIMILAR PRACTICE QUALITY IMPROVEMENT PROJECT AT YOUR INSTITUTION

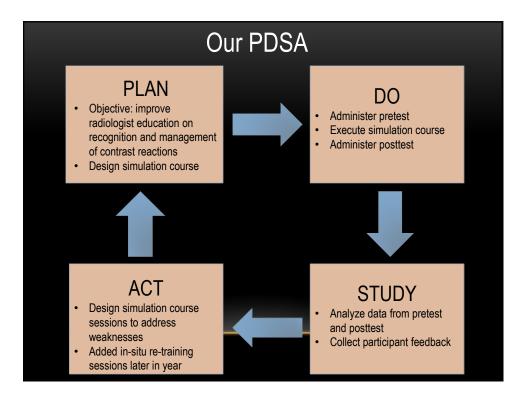
· Minimize disruption for participants-Length of course

- · Our course was designed to last one hour and occur during normal work hours
- · Made it much easier for everyone to attend and eliminated need to take time off
- Scheduling
 - · Our IT dept. built online schedule site (below)
 - · Allow users to pick date/time that works best

	e University Di Contrast Simul			Help	Search:		You are: visitor User list					
LOCATION: East Pavilion 8th floor, SYN:APSE simulation center, left of elevators												
SCHEDULING YOUR TRAINING: Click "Log off" button in the top-right corner if someone else's username shows above it Select from the dates below by clicking on one, confirm it is printed above the table, and then click on any available slot in the table to book it												
TUE-Sep-1. WED-Sep-2. THU-Sep-3. TUE-Sep-4. TUE-Sep-4. TUE-Sep-15 YED-Sep-15 YED-Sep-13 THU-Sep-23 THU-Sep-24 TUE-Sep-29												
RE-SCHEDULING: Please remove	RE-SCHEDULING: Please remove your old reservation first I - Click on your old booking to display it, then click Delete, and confirm deletion											
Tuesday, September 29 2015												
Session: MD_1	MD_2	MD_3	MD_4	MD_5	MD_6	MD_7	MD_8	NURSE_Only!	Session:			
08:30am-09:30am Jones	Boustani	Gardner	Ali	jindal	chen	LeSar	Clark m	analo-rooney	08:30am-09:30am			
09:30am-10:30am	Graeber	Butler	curtis				G	illo-	09:30am-10:30am			
02:00pm-03:00pm Kelleher	Branson	Fulbright	McCann	knobelman	Goehler	Mansourian		orman	02:00pm-03:00pm			
Session: MD_1	MD_2	MD_3	MD_4	MD_5	MD_6	MD_7	MD_8	NURSE_Only!	Session:			
Proiect Manager: Jay Pahade, Pr	Project Manager: Jay Pahade, Project Coordinator: Jennifer Arango, Web Scheduling: Vladimir Neklesa											
	······································											
Please contact Jennifer Arango f	or any questions re	garding scheduling	, dates, times, etc.									
			Copyright©	2015-2020 - Yale Dia	agnostic Radiolo	xgy						
				View as of:								

KEYS ISSUES TO IMPLEMENT A SIMILAR PRACTICE QUALITY IMPROVEMENT PROJECT AT YOUR INSTITUTION

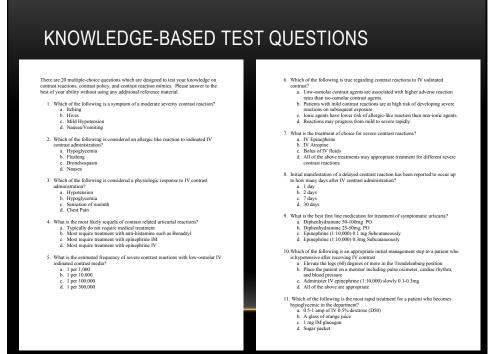

- Frequency of training
 - Is annual training adequate?
 - · Our study showed decline in test scores and comfort levels at 6 months
 - Prior study with small sample of showed decay in knowledge and comfort in managing contrast reactions at 6-9 months*
 - We have now added in-situ simulation training 6 months after the course to refresh knowledge, skills and improve comfort treating reactions


^{*}Trout, A.T., R.H. Cohan, J.H. Ellis, et al., *Teaching management of contrast reactions: does it work and how often do we need to refresh?* Acad Radiol, 2012. **19**(4): p. 498-504.

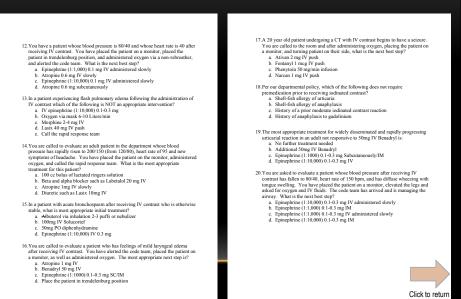
HOW TO IMPLEMENT PRACTICE QUALITY IMPROVEMENT PROJECT

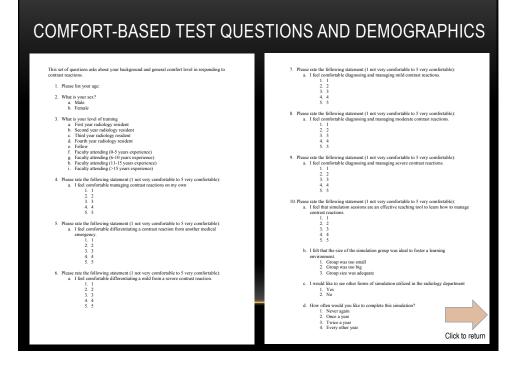
- Until recently, the ABR emphasized that projects should be completed via the PDSA (Plan – Do – Study – Act) cycle
 - 3 phases:
 - Phase 1: baseline PDSA cycle
 - Plan: identify area needing improvement and a measure to assess need; develop a target and plan
 - Do: set plan in motion, collect data
 - · Study: compare results with desired goal, explore deficiencies
 - Act: develop improvement plan for next cycle
 - Phase 2: Implementing improvement plan
 - Phase 3: Post-improvement plan cycle (cycle 2)
 - Cycle can be used continuously to reach goal

Lee, et al. Conducting a Successful Quality Improvement Project for American Board of Radiology Certification. RadioGraphics 2015 35:6, 1643-1651



RECENT ABR CHANGES TO PQI PROJECTS


- Recent changes implemented in September 2015
- While designing PQI projects with PDSA approach is still recommend recent changes by the American Board of Radiology have greatly diversified activities a radiologists can complete to meet PQI requirements as part of the MOC cycle
- We recommend all interested parties review recent commentary for more information and consult the American Board of Radiology website
 - Donnelly, LF. Invited Commentary: Changes to the ABR policy on Requirements fir Diplomates to Meet MOC Part 4-PQI projects and Activities, Lee, et al. *RadioGraphics* 2015 35;6, 1652-54.
 - ABR website: http://www.theabr.org/moc-ro-pqi-guidelines


CONCLUSION

- High-fidelity simulation is an effective tool to improve radiologists' knowledge and comfort in managing contrast reactions
- Training has now become an ongoing quality improvement project in our department, with all residents, fellows and faculty participating in the course annually
- As comfort level declined at 6 months, in-situ simulation training in various locations within our actual department has been incorporated to allow knowledge refreshment 6 months after the simulation course
- Development of a high-fidelity simulation project to improve education on contrast reaction management is a high-yield initiative that also allows completion of a departmental wide PQI project

KNOWLEDGE-BASED TEST QUESTIONS

