

Creation and implementation of a standardized work for CT-guided biopsy procedures

A. Kyle Jones PhD¹, Joe Ensor MS², Rodrick Zvavanjanja MD³, Michael Pomares³, Mohamed Abdelsalam³ MD, Keenan Harris³, Steven Huang MD³, Sanjay Gupta MD³, and Alda Tam MD³ MD Anderson Cancer Center, Division of Diagnostic Imaging, Dept. of Imaging Physics¹ and Interventional Radiology³; Dept. of Biostatistics²

Overview

This work was a team effort and represents the collaborative efforts of a core group of medical physicists, interventional radiologists, and technologists to improve the practice of computed tomography (CT)-guided biopsy procedures in the interventional radiology department at The University of Texas MD Anderson Cancer Center.

At our institution, CT-guided biopsies were performed without standardization. Technical factors such as kVp and mAs for diagnostic CT exams are carefully tailored to individual patients based on their size, however, in many institutions this approach is not applied for CT-guided interventional procedures. Adapting techniques to individual patients and standardizing the procedure is expected to reduce overall radiation dose and reduce variability in image quality.

These efforts are also closely aligned with the Joint Commission Sentinel Event Alert 47 [1], published in August 2011, which highlights the importance of this project. This alert addressed radiation risks in diagnostic imaging, and amongst other suggested actions, recommended using the "Right dose", "Effective processes", and establishing a "Safety culture" to protect patients undergoing imaging procedures.

Aim statement

Our goal was to standardize the performance of CT-guided biopsy procedures in interventional radiology by creating and implementing a 5step standardized work.

Measures of success

We measured the impact of standardization on overall dose and image quality, while at the same time measuring the impact on factors we did not wish to affect, including procedure time, complication rate, and rate of diagnostic yield. CT metrics including the volume computed tomography dose index (CTDI_{vol}) and dose-length product (DLP) were used to quantify dose. Image quality was assessed by measuring the coefficient of variation (CoV) in image noise between the pre-study and study periods.

We used Fisher's exact test to evaluate categorical data, and tested differences in means in the pre-study and study periods using two independent sample *t*-tests. Differences in variation were measured using a folded F-test.

Use of quality tools

We created a **standardized work** to document and outline the best practice for performing CT-guided biopsy procedures. Based on our experience, we knew that the procedural planning scan (PPS) length could be restricted to the area of interest based on prior cross-sectional imaging. We were also aware that in our current practice CT techniques were either not adapted to patient size, or adjusted randomly. This was in contrast to best practice for diagnostic CT at our institution and other institutions [2,3]. Based on this knowledge, we created our standardized work (Fig. 1, lower right corner).

Interventions

Our improvement plan was implemented as follows:

- 1. A standardized work for performing CT-guided biopsy procedures was created. Medical physicists, interventional radiologists, and technologist supervisors collaborated to create the standardized work.
- 2. The standardized work was introduced to technologists and interventional radiologists. Technologists were trained in the use of the standardized work by AT (interventional radiologist) and KH (technologist supervisor).
- 3. The impact of the standardized work was evaluated after a three month study period by AT and AKJ (medical physicist).
- 4. Adjustments to our practice and the standardized work were made based on our findings to further drive improvement. Results were communicated to technologists by KH during a monthly staff meeting, highlighting both good performance and areas targeted for continued improvement; results were communicated to radiologists by AT at the monthly faculty meeting.

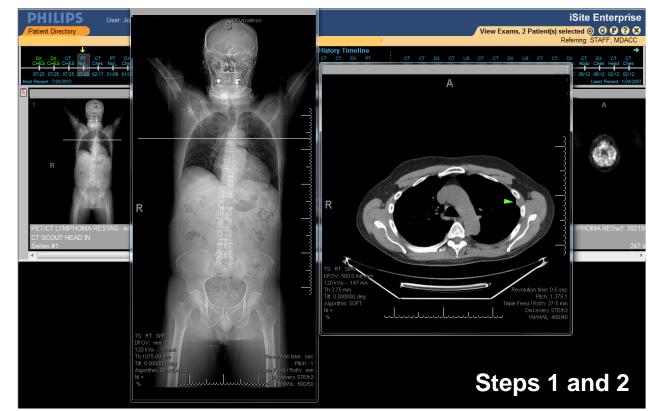


Fig. 2a. Use of Scout Line Mode to determine center of PPS region from most recent CT study.

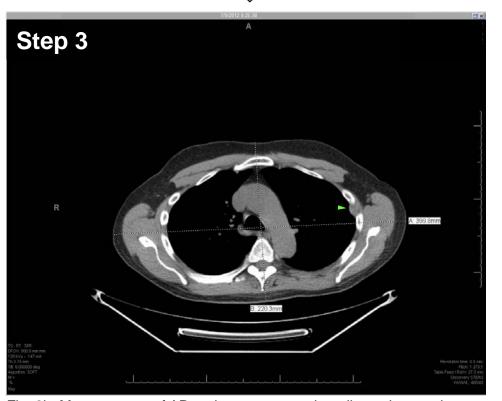


Fig. 2b. Measurement of AP and transverse patient dimensions at the level of the lesion to be biopsied (arrow). Sum of AP + Trans dimensions is 22 cm + 40 cm = 62 cm.

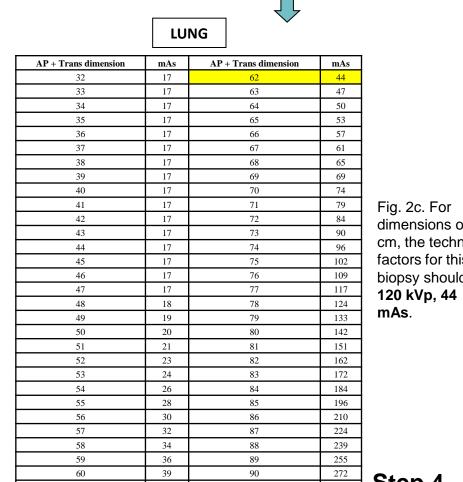


Fig. 2d. PPS range and technical factors set according to standardized work.

mAs.

Fig. 2c. For dimensions of 62

cm, the technica

factors for this biopsy should be

Step 4

Results

A total of 1,165 biopsy procedures were analyzed between the pre-study and study periods. Overall, the total DLP decreased by 71.9% (689 mGy-cm pre-study versus 193.9 mGy-cm study, P < 0.0001) after implementation of the standardized work. Significant decreases in DLP were also observed when the results were stratified by biopsy site (Table 1).

Tissue was sampled successfully in all biopsy procedures, and there was no difference in patient age, body mass index (BMI), complication rate, rate of diagnostic yield, and procedure time between the pre-study and study periods.

The decrease in DLP was driven by both a reduction in the mean length of the PPS (198.8 mm pre-study versus 125.1 mm study, P < 0.0001), addressed by Step 5 in the standardized work, and a decrease in the mean $CTDI_{vol}/5$ mm* (1.7 mGy pre-study versus 0.72 mGy study, P < 0.0001), addressed by Step 4 in the standardized work. CTDI_{vol}/5 mm decreased regardless of BMI, however, percentage decreases were less for larger patients, as expected (Table 2). Inter-physician variability in patient doses decreased between the pre-study and study periods (Fig. 3).

The coefficient of variation (CoV) of image noise decreased from 0.40 during the pre-study period to 0.32 during the study period (P < 0.0001), demonstrating increased standardization of image quality (Table 3) Overall, noise increased in the study period (Table 3) but images were still adequate for performing CT-guided biopsy (Fig. 4)

Changes were made to our standardized work in response to our results, including re-educating technologists about anatomical landmarks and adding a table to the standardized work for solid organ biopsies (Fig. 1, lower right corner). Solid organ was the site with the most deviations from the standardized work during the study period, owing to physician requests for increased mAs.

*CTDl_{vol}/5 mm was defined as the total CTDl_{vol} for the biopsy scans normalized to 5 mm of scan coverage

Generalizability

Our standardized work is easily generalizable and we have already entertained requests for assistance in implementing our standardized work at other institutions in the Texas Medical Center. Technique charts can be adapted for any make and model of CT scanner used to perform CT-guided biopsies, and for any baseline image quality desired by physicians.

Conclusion and next steps

The creation and implementation of a standardized work for performing CT-guided biopsy procedures resulted in a significant decrease in overall patient radiation dose, reduced procedural variability, and standardized image quality. We continue to improve our standardized work by evaluating new data every three months and making necessary adjustments.

eferences

- The Joint Commission. Sentinel Event Alert 47, available at
- http://www.jointcommission.org/assets/1/18/SEA_47.pdf, accessed 9/2012, 2011. Frush DP, Soden B, Frush KS, Lowry C. Improved pediatric multidetector body CT
- using a size-based color-coded format, Am J Roentgenol 178:721-26, 2002. Joint Task Force on Adult Radiation Protection. Image Wisely Campaign, available at www.imagewisely.org, accessed 9/2012.

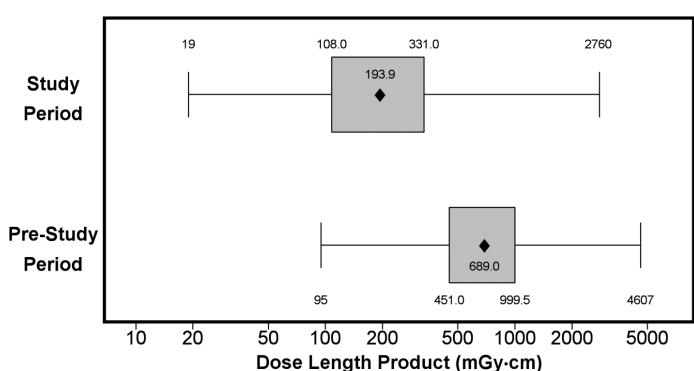


Fig. 3. Reductions in both mean DLP (diamonds) and inter-quartile range were observed after implementation of the standardized work.

Fig. 4. Biopsy images from patients

who underwent CT-guided biopsy in

both the pre-study and study periods

biopsy needle, target lesion and

adjacent structures were clearly

The study period images demonstrate an increase in image noise but the

visualized. (A) Patient, BMI 19.9, with

non-small cell lung cancer of the left

upper lobe. The DLP was 489 mGy-

cm in the pre-study period versus 69

mGy-cm in the study period. (B)

Patient, BMI 24.6, with a history of

mphoma and a mesenteric mass

study period versus 104 mGy-cm in

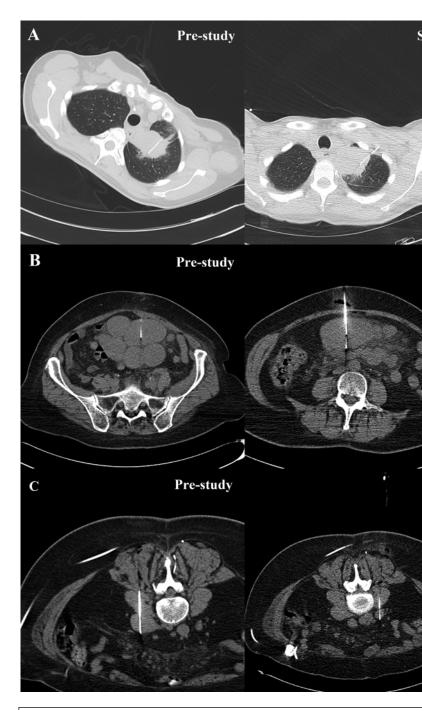
34.9, with a history of lymphoma and

lymphadenopathy. The DLP was 636

biopsy of the 3 cm right retroperitoneal

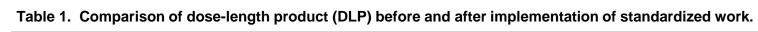
study period for biopsy of the 1 cm left

lymph node versus 173 mGy-cm in the


mGy-cm in the pre-study period for

the study period. (C) Patient, BMI

bilateral retroperitoneal


para-aortic lymph node.

The DLP was 758 mGy-cm in the pre-

	CHES	ST			ABDOMEN	I/PELVIS	
AP + Trans dimension	mAs	AP + Trans dimension	mAs	AP + Trans dimension	mAs	AP + Trans dimension	mAs
32	17	62	44	32	17	62	82
33	17	63	47	33	17	63	90
34	17	64	50	34	17	64	100
35	17	65	53	35	17	65	111
36	17	66	57	36	17	66	123
37	17	67	61	37	17	67	136
38	17	68	65	38	17	68	150
39	17	69	69	39	17	69	166
40	17	70	74	40	17	70	184
41	17	71	79	41	17	71	204
42	17	72	84	42	17	72	225
43	17	73	90	43	17	73	249
44	17	74	96	44	17	74	276
45	17	75	102	45	17	75	306
46	17	76	109	46	17	76	338
47	17	77	117	47	18	77	374
48	18	78	124	48	20	78	414
49	19	79	133	49	22	79	459
50	20	80	142	50	24	80	508
51	21	81	151	51	27	81	562
52	23	82	162	52	30	82	415
53	24	83	172	53	33	83	459
54	26	84	184	54	36	84	492
55	28	85	196	55	40	85	492
56	30	86	210	56	44	86	492
57	32	87	224	57	49	87	492
58	34	88	239	58	54	88	492
59	36	89	255	59	60	89	492
60	39	90	272	60	67	90	492
61	41			61	74		

*Note: For table entries in **bold** use 140 kV.

THE UNIVERSITY OF TEXAS

		Perio	od		_	
	Pro	e-study	S	tudy		
Biopsy site	N	Geometric mean	N	Geometric mean	Reduction in DLP (%)	<i>P</i> -value
Lung	265	757.3	248	150.8	80.1	< 0.0001
Solid organ*	78	735.7	42	304.0	58.7	< 0.0001
Lymph node	192	659.2	182	260.2	60.5	< 0.0001
Bone	77	520.0	81	171.4	67.0	< 0.0001
All	612	689.0	553	193.9	71.9	< 0.0001

*The solid organ biopsy category includes liver, kidney, adrenal and spleen biopsies.

Table 2. Comparison of CTDI_{vol}/5 mm* before and after implementation of the standardized work.

		Pe	riod			
	Pre	-Study	St	udy		
BMI category [†]	N	Mean	Ν	Mean	Reduction (%)	<i>P</i> -value
BMI < 25	218	1.40	183	0.486	65.2	< 0.0001
25 ≤ BMI < 30	196	1.71	200	0.681	60.2	< 0.0001
30 ≤ BMI < 35	98	1.74	87	1.04	40.6	< 0.0001
BMI ≥ 35	101	2.18	75	1.42	34.9	< 0.0001

*CTDI_{vol}/5 mm was defined as the total CTDI_{vol} for the biopsy scans normalized to 5 mm of scan coverage [†]BMI categories were adapted from the modified WHO criteria for classification of obesity.

(http://apps.who.int/bmi/index.jsp?introPage=intro 3.html, accessed 10/31/2012)

Table 3. Comparison of image quality before and after implementation of standardized work.

			Pe	riod			_
-		Pre-study			Study		_ <i>P</i> -'
Biopsy site	N	Normalized image noise*	CoV [†]	N	Normalized image noise*	CoV [†]	Mean
Lung	265	11.9	0.365	234	18.9	0.355	< 0.0001
Solid organ	78	14.4	0.298	30	21.1	0.231	< 0.0001
Lymph node	192	14.6	0.420	138	20.2	0.269	< 0.0001
Bone	77	13.9	0.463	67	19.5	0.323	< 0.0001
All	612	13.3	0.400	469	19.5	0.321	< 0.0001

*Geometric mean. Note: Higher values indicate higher noise levels in biopsy images.

[†]Coefficient of variation (CoV) of image noise.

CT IR 3

	SOLID	ORGAN	
AP + Trans dimension	mAs	AP + Trans dimension	mAs
32	17	62	122
33	17	63	136
34	17	64	150
35	17	65	166
36	17	66	184
37	17	67	203
38	17	68	225
39	17	69	249
40	17	70	276
41	17	71	305
42	17	72	338
43	18	73	374
44	20	74	414
45	22	75	458
46	24	76	507
47	27	77	562
48	30	78	414
49	33	79	459
50	36	80	492
51	40	81	492
52	44	82	492
53	49	83	492
54	54	84	492
55	60	85	492
56	67	86	492
57	74	87	492
58	82	88	492
59	90	89	492
60	100	90	492
61	111		

Checklist for CT-guided Biopsy

1. In the EMR, locate target lesion on the referenced diagnostic cross-sectional imaging

- Use scout line mode to determine anatomic landmark. Sum the AP and transverse dimensions on the reference image. If the full transverse extent is not visualized on the cross-sectional image, measure the transverse dimension using the topogram.
- 4. Use sum of AP and transverse dimensions to determine the appropriate kVp and mAs from chart for preplan and biopsy modes. Any rotation time can be used.
- 5. Set the length of the preplan scan to **75 mm** and center the range on the landmark.

6. Scan

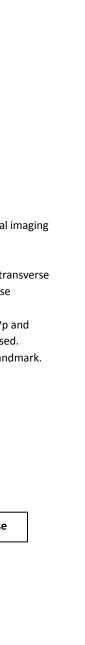



Fig. 1 Standardized work used to determine CT biopsy techniques. Modifications include: Added separate chart for SOLID ORGAN (highlighted) with higher baseline mA, charts identified by body region, prescan length bolded.

